663 research outputs found

    Student-Parent Handbook for Macon High School

    Get PDF

    Ethynylmetallic and Substituted Ethynylmetallic Reactions in Various Solvents

    Get PDF
    Incidental to a study of the relative reactivities of ethynylmetallic and substituted ethynylmetallic compounds, in various media including liquid ammonia, it has been shown that these organometallic compounds react in a customary manner, not only with RX compounds but also with a large variety of compounds having a functional group. The ethynyl tertiary alcohols formed from ketones lose acetylene on heating and give the original ketone. For example, myristone and ethynylsodium give di-tridecyl-ethynylcarbinol, which when heated gives an almost quantitative yield of myristone and acetylene. In the presence of small amounts of organolead compounds, the ethynylsodium behaves like sodium carbide to give, for example, with benzophenone, -tetraphenylbutyndiol. Ethynylsodium with nitriles gives dimeric basic compounds

    OPTIMAL STRUCTURE OF AN AGRIBUSINESS FIRM CONSIDERING THE ECONOMICS OF MAJOR, LINKED COMPONENTS

    Get PDF
    An optimization model is used to evaluate the economics of various components of a large agribusiness. The benefits of using interger programming are contrasted to traditional linear programming analysis in conjunction with outside-the-model budgeting analysis.Agribusiness, Research Methods/ Statistical Methods,

    Linking enzyme sequence to function using conserved property difference locator to identify and annotate positions likely to control specific functionality

    Get PDF
    BACKGROUND: Families of homologous enzymes evolved from common progenitors. The availability of multiple sequences representing each activity presents an opportunity for extracting information specifying the functionality of individual homologs. We present a straightforward method for the identification of residues likely to determine class specific functionality in which multiple sequence alignments are converted to an annotated graphical form by the Conserved Property Difference Locator (CPDL) program. RESULTS: Three test cases, each comprised of two groups of funtionally-distinct homologs, are presented. Of the test cases, one is a membrane and two are soluble enzyme families. The desaturase/hydroxylase data was used to design and test the CPDL algorithm because a comparative sequence approach had been successfully applied to manipulate the specificity of these enzymes. The other two cases, ATP/GTP cyclases, and MurD/MurE synthases were chosen because they are well characterized structurally and biochemically. For the desaturase/hydroxylase enzymes, the ATP/GTP cyclases and the MurD/MurE synthases, groups of 8 (of ~400), 4 (of ~150) and 10 (of >400) residues, respectively, of interest were identified that contain empirically defined specificity determining positions. CONCLUSION: CPDL consistently identifies positions near enzyme active sites that include those predicted from structural and/or biochemical studies to be important for specificity and/or function. This suggests that CPDL will have broad utility for the identification of potential class determining residues based on multiple sequence analysis of groups of homologous proteins. Because the method is sequence, rather than structure, based it is equally well suited for designing structure-function experiments to investigate membrane and soluble proteins

    Bioprospecting metagenomes: glycosyl hydrolases for converting biomass

    Get PDF
    Throughout immeasurable time, microorganisms evolved and accumulated remarkable physiological and functional heterogeneity, and now constitute the major reserve for genetic diversity on earth. Using metagenomics, namely genetic material recovered directly from environmental samples, this biogenetic diversification can be accessed without the need to cultivate cells. Accordingly, microbial communities and their metagenomes, isolated from biotopes with high turnover rates of recalcitrant biomass, such as lignocellulosic plant cell walls, have become a major resource for bioprospecting; furthermore, this material is a major asset in the search for new biocatalytics (enzymes) for various industrial processes, including the production of biofuels from plant feedstocks. However, despite the contributions from metagenomics technologies consequent upon the discovery of novel enzymes, this relatively new enterprise requires major improvements. In this review, we compare function-based metagenome screening and sequence-based metagenome data mining, discussing the advantages and limitations of both methods. We also describe the unusual enzymes discovered via metagenomics approaches, and discuss the future prospects for metagenome technologies

    A clustering property of highly-degenerate transcription factor binding sites in the mammalian genome

    Get PDF
    Transcription factor binding sites (TFBSs) are short DNA sequences interacting with transcription factors (TFs), which regulate gene expression. Due to the relatively short length of such binding sites, it is largely unclear how the specificity of protein–DNA interaction is achieved. Here, we have performed a genome-wide analysis of TFBS-like sequences for the transcriptional repressor, RE1 Silencing Transcription Factor (REST), as well as for several other representative mammalian TFs (c-myc, p53, HNF-1 and CREB). We find a nonrandom distribution of inexact sites for these TFs, referred to as highly-degenerate TFBSs, that are enriched around the cognate binding sites. Comparisons among human, mouse and rat orthologous promoters reveal that these highly-degenerate sites are conserved significantly more than expected by random chance, suggesting their positive selection during evolution. We propose that this arrangement provides a favorable genomic landscape for functional target site selection

    STRATEGIC AGRIBUSINESS OPERATION REALIGNMENT IN THE TEXAS PRISON SYSTEM

    Get PDF
    Mathematical programming-based systems analysis is used to examine the consequences of alternative operation configuration for the agricultural operations within the Texas Department of Criminal Justice. Continuation versus elimination of the total operation as well as individual operating departments are considered. Methodology includes a firm systems operation model combined with capital budgeting and an integer programming based investment model. Results indicate the resources realize a positive return as a whole, but some enterprises are not using resources profitably. The integer investment model is found to be superior for investigating whether to continue multiple interrelated enterprises.agribusiness, enterprise selection, mathematical programming, optimal enterprise organization, Agribusiness,

    Mithramycin and Analogs for Overcoming Cisplatin Resistance in Ovarian Cancer

    Get PDF
    Ovarian cancer is a highly deadly malignancy in which recurrence is considered incurable. Resistance to platinum-based chemotherapy bodes a particularly abysmal prognosis, underscoring the need for novel therapeutic agents and strategies. The use of mithramycin, an antineoplastic antibiotic, has been previously limited by its narrow therapeutic window. Recent advances in semisynthetic methods have led to mithramycin analogs with improved pharmacological profiles. Mithramycin inhibits the activity of the transcription factor Sp1, which is closely linked with ovarian tumorigenesis and platinum-resistance. This article summarizes recent clinical developments related to mithramycin and postulates a role for the use of mithramycin, or its analog, in the treatment of platinum-resistant ovarian cancer

    Impacts of multiple stressors on a benthic foraminiferal community: a long-term experiment assessing response to ocean acidification, hypoxia and warming

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bernhard, J. M., Wit, J. C., Starczak, V. R., Beaudoin, D. J., Phalen, W. G., & McCorkle, D. C. Impacts of multiple stressors on a benthic foraminiferal community: a long-term experiment assessing response to ocean acidification, hypoxia and warming. Frontiers in Marine Science, 8, (2021): 643339, https://doi.org/10.3389/fmars.2021.643339.Ocean chemistry is changing as a result of human activities. Atmospheric carbon dioxide (CO2) concentrations are increasing, causing an increase in oceanic pCO2 that drives a decrease in oceanic pH, a process called ocean acidification (OA). Higher CO2 concentrations are also linked to rising global temperatures that can result in more stratified surface waters, reducing the exchange between surface and deep waters; this stronger stratification, along with nutrient pollution, contributes to an expansion of oxygen-depleted zones (so called hypoxia or deoxygenation). Determining the response of marine organisms to environmental changes is important for assessments of future ecosystem functioning. While many studies have assessed the impact of individual or paired stressors, fewer studies have assessed the combined impact of pCO2, O2, and temperature. A long-term experiment (∼10 months) with different treatments of these three stressors was conducted to determine their sole or combined impact on the abundance and survival of a benthic foraminiferal community collected from a continental-shelf site. Foraminifera are well suited to such study because of their small size, relatively rapid growth, varied mineralogies and physiologies. Inoculation materials were collected from a ∼77-m deep site south of Woods Hole, MA. Very fine sediments (<53 μm) were used as inoculum, to allow the entire community to respond. Thirty-eight morphologically identified taxa grew during the experiment. Multivariate statistical analysis indicates that hypoxia was the major driving factor distinguishing the yields, while warming was secondary. Species responses were not consistent, with different species being most abundant in different treatments. Some taxa grew in all of the triple-stressor samples. Results from the experiment suggest that foraminiferal species’ responses will vary considerably, with some being negatively impacted by predicted environmental changes, while other taxa will tolerate, and perhaps even benefit, from deoxygenation, warming and OA.This work was supported by the US NSF SEES-OA grant OCE-1219948 to JB and the Investment in Science Program at WHOI. DM also received support from the NSF Independent Research and Development Program
    • …
    corecore