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Abstract: Ovarian cancer is a highly deadly malignancy in which recurrence is considered incurable.
Resistance to platinum-based chemotherapy bodes a particularly abysmal prognosis, underscoring
the need for novel therapeutic agents and strategies. The use of mithramycin, an antineoplastic
antibiotic, has been previously limited by its narrow therapeutic window. Recent advances in
semisynthetic methods have led to mithramycin analogs with improved pharmacological profiles.
Mithramycin inhibits the activity of the transcription factor Sp1, which is closely linked with ovarian
tumorigenesis and platinum-resistance. This article summarizes recent clinical developments related
to mithramycin and postulates a role for the use of mithramycin, or its analog, in the treatment of
platinum-resistant ovarian cancer.

Keywords: ovarian cancer; mithramycin; Sp1; novel therapeutics; platinum-resistant

1. Introduction

Ovarian cancer is the fifth deadliest malignancy in US women. In 2020, an estimated
21,750 new cases and approximately 13,940 deaths related to ovarian cancer were pre-
dicted [1]. There are no uniformly accepted screening tests for ovarian cancer. Early disease
symptoms are often vague and non-specific, including pelvic discomfort, bloating, changes
in gastrointestinal or genitourinary habits. For this reason, more than 75% of new cases are
diagnosed at stage III or greater. Epithelial histopathology accounts for approximately 90%
of malignant ovarian neoplasms (90%) [2]. The mainstay of advanced-stage ovarian cancer
treatment is typically a combination of surgery (staging and debulking) and systemic
chemotherapy with a taxane-platinum doublet [3]. Despite a high likelihood of clinical
response from primary therapy, more than 80% of advanced stage disease will recur [4].

Recurrent ovarian cancer is considered “incurable”. A specific prognosis is dependent
upon sensitivity to platinum-based agents. There is an exceedingly poor prognosis in
platinum-resistant disease, with an estimated overall survival of 9–12 months [5]. Typ-
ical salvage regimens utilize sequential single-agents, as multiagent regimens have not
provided benefits but only increased toxicity [6–8]. In the setting of platinum-resistant
disease, single-agent chemotherapy response rates are <20% with an expected progression
free survival of only 3-4 months. Due to dismal survival outcomes, there is a demonstrated
need for new or modified therapies in the setting of platinum-resistant ovarian cancer.
Improved understanding of the mechanisms of platinum resistance may help identify new
and effective treatment strategies for this patient population [4,5].

The primary mechanism of action of platinum compounds is covalent binding of
platinum to the N7 atoms of guanine bases of DNA with the creation of monoadducts and
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intra- and/or interstrand cross-links. These DNA lesions, of which interstrand crosslinks
(ICL) are the most toxic, act as replication and transcription roadblocks that inhibit cell
division and ultimately trigger cell death [9,10]. There are several mechanisms associated
with platinum resistance, including increased drug efflux, enhanced DNA repair, and
intracellular protein alterations that can sequester or modify platinum agents [11,12].
Enhanced DNA repair is considered a key driver of platinum-resistance. One of several
DNA repair mechanisms is engaged depending on the nature of the crosslink, such as
base excision repair (BER), mismatch repair (MMR), homologous recombination (HR),
and nucleotide excision repair (NER) [11,13]. The NER pathway is the repair pathway
responsible for the removal of platinum monoadducts and intrastrand crosslinks. NER
involves ~20 proteins, culminating with incisions of the damaged DNA strand on both
sides of the lesion by the XPG endonucleases and the heterodimer XPF-ERCC1 [14]. Since
XPF-ERCC1 is also involved in ICL repair, this endonuclease is especially critical [15,16].

Other mechanisms of resistance deal with the influx and efflux of platinum drugs
in target cells. The intracellular concentration of platinum compounds determines the
number of DNA lesions produced by the drug [17]. Copper transporter-1 (CTR1) transports
platinum into the cell, and its downregulation can reduce the intracellular accumulation of
platinum compounds [18]. Multi-drug transporters (e.g., MDR1) are involved in the active
efflux of platinum-agents [5]. Additionally, glutathione, an intracellular tripeptide, has
been associated with platinum drug metabolism and interference with platinum-induced
DNA damage [5,11].

Novel therapeutics that can overcome platinum-resistance could significantly impact
ovarian cancer mortality. With this goal in mind, the identification of novel therapeutics
for the treatment of platinum-resistant ovarian cancer is of critical importance [19]. The
purpose of this article is to review the role of mithramycin, an antineoplastic antibiotic,
and its analogs as a potential therapeutic agent in overcoming platinum resistance in
ovarian cancer.

2. Mithramycin

Mithramycin, also referred to as plicamycin, is an antineoplastic antibiotic that is
naturally produced by three bacteria of the Streptomyces genus (S. argillaceus, S. tanashiensis,
and S. plicatus) (Figure 1) [20]. Historically, some leukemias and testicular cancer were
treated with mithramycin, in addition to Paget’s disease and the associated hypercalcemia.
Despite its anticancer activity, the use of mithramycin was limited due to its very narrow
therapeutic window and severe toxicity, resulting in discontinued commercial production
in 2000 [10]. The discovery of mithramycin’s activity against Ewing sarcoma, bone and
soft tissue pediatric cancer in vitro and in mouse tumor xenografts have led to a phase I/II
trial of mithramycin as a monotherapy against Ewing sarcoma [21,22]. This trial, too, was
terminated due to the inability to reach pharmacologically relevant mithramycin levels in
plasma before the onset of adverse effects.

Figure 1. Chemical structure of Mithramycin [23].
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3. Use of Mithramycin in Ovarian Cancer

The clinical use of mithramycin for ovarian cancers has largely been limited to the
1960s. In a case series studying the use of mithramycin in “embryonal cancers”, a form of
germ cell tumors, utility in primary testicular tumors was noted; however, a metastatic
ovarian teratoma was included in the series with marked remission [24]. A small clinical
trial using mithramycin as salvage chemotherapy in 26 patients with advanced metastatic
malignancy has also been reported. Two patients had ovarian pathology. While the
majority (16/26) of patients did not have a therapeutic response, one ovarian subject
had “temporary arrest” of the disease, while the other ovarian subject had quantitative
remission. Regarding adverse side effects, they were few and relatively mild [25]. A follow-
up clinical trial in 1968, involved 32 subjects with advanced malignancies of multiple
primary tumors. There was a single ovarian cancer subject that had progression of disease
on therapy. Interestingly, 10/32 subjects had no adverse cytotoxic effects from therapy.
Reflecting the highly advanced nature of the subjects’ disease, 10/32 subjects died within
two weeks of therapy [26].

4. Recent Clinical Development

Interest in mithramycin was renewed after a high-throughput assay-driven discovery
of this molecule as an inhibitor of EWS-FLI1, an abnormal oncogenic fusion. EWS-FLI1
is an aberrant transcription factor causing Ewing sarcoma and is present only in tumor
cells. Mithramycin demonstrated anti-tumor effects both in vitro and in vivo in Ewing
sarcoma studies [22]. This led to a phase I/II clinical study of mithramycin monotherapy
in Ewing sarcoma (NCT01610570). This was ceased due to hepatotoxicity [21,27]. Ap-
proximately 75% of treated patients had dose limited hepatotoxicity, with acute injury
starting within days of administration. Hepatotoxicity was noted at 25 µg/kg/dose, re-
quiring a dose de-escalation. As a consequence, no efficacy was demonstrated. Notable
transaminitis was seen within 72 h of treatment, reaching levels up to 500× the upper limit
of normal, with resolution often taking 1–3 weeks [28,29]. Recent investigations suggested
that the hepatotoxicity was related to the inhibition of farnesoid-X receptor signaling and
germline variants in genes involved in bile acid flow and disposition (e.g., ABCB4 and
ABCB11) [29]. Interestingly, the associated hepatic injury was transient, rarely symptomatic,
and did not require intervention; however, it significantly hampered the clinical utility of
mithramycin [21,29].

5. Mechanism of Action

The primary mechanism of action of mithramycin is recognized to be in its control
of transcription via noncovalent binding of this molecule as a Mg2+-coordinated dimer to
X(G/C)(G/C)X DNA sites in the minor groove (here, X is any base) [30–36]. Perturbing
effects of mithramycin on transcription were observed for G/C-rich Sp1-regulated promot-
ers [37–41]. This partially selective inhibition of promoters controlled by Sp1, thought to be
relevant for ovarian cancer, is associated with a number of antineoplastic effects, including
increased apoptosis, decreased angiogenesis, and inhibition of cell growth (Figure 2). In-
hibition of Sp1-dependent transcription is associated with significant anticancer activity
across multiple cell lines. [42]. Even though Sp1-controlled transcription has been viewed
historically as a prominent target of mithramycin, ultimately, the effect of mithramycin on
cancer cells is likely to be an indirect consequence of perturbing the function of Sp1 or some
other transcription factor. Such indirect effects appear to be responsible for upregulation of
p53 in malignant mesothelioma [43], as well as gynecologic cancers [44].
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Figure 2. Mithramycin inhibits Sp1 binding to DNA, which may result in increased apoptosis rather
than enhanced tumorigenesis.

6. SP1

Specificity protein 1 (Sp1) is a zinc finger transcription factor first described in 1986
with an affinity for GC rich promoter regions [45–48]. Sp1 regulates multiple cellular func-
tions and has been repeatedly linked to oncogenesis with its involvement in the expression
of the cell cycle, angiogenesis, DNA damage and repair, and apoptosis genes. Upregulation
of Sp1 expression is a poor prognostic factor in multiple cancer types, including gastric,
pancreatic, and lung [42,49–53]. While Sp1 has been an enduring target for chemotherapy,
transcription factors have traditionally been viewed as “undruggable”. The rationale stems
from the lack of small hydrophobic cavities for compounds on the binding surface of tran-
scription factors. Additionally, small molecules that bind DNA lack sequence specificity
and, therefore, have significant off-target toxicity and effects [30,54]. Mithramycin is not
significantly different. Despite being a potent Sp1 inhibitor, toxicity is considerable with
the standard formulation.

Due to the central role of Sp1 in cell cycle regulation and cell growth, aberrations in
its expression, specifically upregulation, have been linked to tumorigenesis in a number
of malignancies, including ovarian cancer (Figure 3). In ovarian cancer cells, Sp1 can
be upregulated, activating numerous oncogenes and leading to increased cell migration,
angiogenesis, and decreased apoptosis [42,55]. CD147, an immunoglobin that is overex-
pressed in ovarian cancer and noted to be an independent prognostic factor, phosphorylates
Sp1, and forms a positive feedback loop in vitro [56]. Additional studies demonstrated
that upregulation of Sp1 increased expression of VEGF and subsequent angiogenesis and
migration of SKOV3-T ovarian cell lines in vivo and in vitro [57]. Hepatitis B X-interacting
protein (HBXIP), an oncoprotein overexpressed in ovarian cancer, was shown to promote
cell migration via induced Sp1-mediated transcription [58]. Sp1 was also shown to sup-
press microRNA 335, for which low expression has been associated with poor prognosis
in ovarian cancer and enhanced ovarian cancer cell migration in vivo [59]. Interestingly,
targeting Sp1 has demonstrated prior success in cancer cell lines. Tolfenamic acid, a Sp1
inhibitor, was strongly synergistic with cisplatin in ES2 and OVCAR-3 cell lines in vitro [60].
In a large cohort of patients with ovarian cancer, Knappskog and colleagues demonstrated
that MDM2 promoter polymorphisms resulted in decreased SP1 promoter binding with
reduced SP1 expression and a resulting decrease in ovarian cancer risk [61], suggesting Sp1
inhibition as a potential therapeutic target in ovarian cancer [62].
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Figure 3. Sp1 is involved in a number of downstream effects related to tumor progression.

Sp1 has also been implicated in chemotherapy resistance [63]. In a study utilizing
platinum-resistant SKOV3 cells, SP1 was upregulated and involved in the transcription
of drug resistance proteins, MRP1, and MRP4 [63]. Increased expression of SP1 in clear
cell ovarian cancer lines reduces sensitivity to SN-38, an irinotecan derivative, by upreg-
ulating the expression of Heparin-binding epidermal growth factor-like growth factor
(HB-EGF) in vitro [64]. Long non-coding RNA ZFAS1 was demonstrated to be overex-
pressed in epithelial ovarian cancer and was associated with platinum and taxol chemore-
sistance via targeting a MiR-150-5p/SP1 axis [65]. In an analysis of the National Center
for Biotechnology Information Gene Expression DatabaseGEO database, Sp1 was found
to be overexpressed in platinum-resistant ovarian cancer patients [63]. Since Sp1-driven
transcription plays an integral role in the pathogenesis of ovarian cancer and platinum-
resistance mechanisms [38,42,66], and mithramycin has demonstrated a potent ability to
inhibit Sp1, mithramycin or its more selective, safer analogs could be a potential strategy
to overcome platinum resistance.

Further investigation of ovarian cancer stem cells using high-throughput screen-
ing identified mithramycin as a drug of interest [67]. Ovarian cancer stem cells have
self-renewal capacity, resistance to numerous chemotherapy agents, and the ability to
differentiate into different lineages. Of 825 compounds screened, mithramycin was noted
to be a potent inhibitor of ovarian cancer stem cell proliferation [67]. In the same study,
mithramycin was one of four FDA-approved agents that demonstrated additional inhibi-
tion of OVCAR-3 cell proliferation [67]. OVCAR-3 is a cisplatin-resistant ovarian cell line
that is widely used as an in vitro model for platinum resistance in ovarian cancer [68,69].
Interestingly, OVCAR-3 is also resistant to doxorubicin, another chemotherapy agent
derived from Streptomyces with a chemically distinct structure and a intercalative mode
of DNA binding. Additional research in the early 2010s indicated a potentially signifi-
cant role for mithramycin or a mithramycin-analog in the treatment of ovarian cancer,
with promising anti-tumor effects demonstrated in vitro and in vivo [41]. Mithramycin
analogs demonstrated inhibition of Sp1 dependent transcription in cell culture lines [37]
and in human ovarian cancer xenografts [41]. Mithramycin and additional analogs demon-
strated rapid intracellular accumulation in OVCAR-3 cell lines [38]. The IC50 values of
mithramycin and related compounds were in the low-nanomolar range in OVCAR-3 cell
cultures, induce cell arrest in G1 [70]. This finding raises the possibility of mithramycin or
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its analog as a potential treatment for chemotherapy-resistant ovarian cancer, particularly
platinum-resistant cancer.

Additional studies in other malignancies have opened similar prospects for the treat-
ment of chemoresistant lines. Mithramycin was observed to inhibit expression of ABCB8, a
subunit of a potassium channel responsible for multi-drug resistance, in melanoma cells
and sensitized chemotherapy-resistant breast cancer stem cells to doxorubicin via Sp1
inhibition [71,72]. Synergistic combination therapies could potentially circumvent the
potential toxicity of mithramycin by employing lower doses of this agent in combination
with additional chemotherapy agents. There is a paucity of data on synergistic effects
of mithramycin in combination with other chemotherapeutic agents for the treatment of
ovarian cancer, although there are some data in other cell lines. In a parallel screening of
FDA drugs, mithramycin was noted to be a profound sensitizer for TRAIL-induced apop-
tosis in pancreatic cancer [73]. Additionally, mithramycin has been noted in vitro to have
synergy with vorinostat in Sezary T lymphoma [74], bortezomib in multiple myeloma [75],
cabazitaxel in drug-resistant acute B cell lymphoblastic leukemia [76], and betulinic acid
and bevacizumab in pancreatic cancer [77,78]. Mithramycin was noted to have a synergistic
effect with nutlin-3, a p53-MDM2 inhibitor, in an endometrial cancer cell line (HHUA) [44].
Also, the same study demonstrated significant in vitro and in vivo efficacy against ovarian
cancer cell lines, including xenografts and intraperitoneal injections of mithramycin, albeit
at considerably high doses (600 µg/kg/day) [76].

7. Development of Mithramycin Analogues

Whilst mithramycin has significant anticancer activity, severe toxicity precludes its use.
This issue has prompted the development of novel and more selective mithramycin deriva-
tives. The analogs contain the tricyclic chromophore of mithramycin, which preserves the
DNA binding function while differing in the nature of the 3-side chain or the identity of
the sugars. The varying side chains can be optimized to interact selectively with specific
transcription factors and modulate the toxicity and efficacy of the analogs. [79]. Genetic
approaches to alter the mithramycin biosynthesis pathway resulted in the synthesis of
“mithralogs”, with altered pharmacological and biochemical properties [37]. Mithramycin
analogs are synthesized by semisynthetic techniques using a mutant strain of a bacte-
rial producer that generates a mithramycin precursor or a shunt product, which is then
elaborated by standard chemical synthesis [39]. These mithramycin derivatives demon-
strate promise with retained ability to inhibit Sp-1 transcription and tumorigenesis while
reducing toxicity compared to unaltered mithramycin [31,38,40,41,80–82]. Most recently,
mithramycin SA analogs, with 3-side chain modifications, showed highly improved se-
lectivity of inhibition of Ewing sarcoma and TMPRSS2-ERG expressing prostate cancer
cells over mithramycin [83]. Similarly, mithramycin 2′-oximes displayed improved selec-
tivity against Ewing sarcoma cells in vitro as well as a better pharmacokinetic PK profile
and somewhat superior efficacy in mouse Ewing sarcoma xenografts, relative to those of
mithramycin [84].

One of the most promising mithralogs, demycarosyl-3D-betat-D-digitoxosyl-mithramycin
SK (MTM-DIG-MSK or EC-8042), has demonstrated retained anti-tumor properties, includ-
ing in vitro ovarian cancer lines, but reduced in vitro toxicity in fibroblasts and mononu-
clear blood cells, compared to mithramycin [37,40,70,82]. Mithramycin and EC-8042 re-
duced the viability and invasiveness of malignant melanoma cell lines [85]. EC-8042
inhibited SP1 transcription in sarcoma cell lines with the induction of cell cycle arrest
and apoptosis, and interestingly was not a substrate for several drug resistance efflux
pumps [86]. Compared to mithramycin SK, another mithramycin analog, EC-8042 had
greater anti-transcriptional effects in colon carcinoma cell lines [82]. Additionally, in
a prostate cancer mouse model, mithramycin analogs were 4-32x better tolerated than
standard mithramycin, and exhibited considerable anti-tumor effects against xenografts
without evidence of systemic toxicity [87]. There is also some evidence to suggest a syn-
ergistic effect with other chemotherapeutic agents in some cancer cell lines. EC-8042
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potentiated the effect of docetaxel in triple-negative breast cancer cells in mouse xenograft
models. There was no synergy with carboplatin in that setting [88].

Mithramycin analogs also demonstrated efficacy in pre-clinical ovarian studies. EC-
8042 displayed significant anti-tumor activity against ovarian cancer cell lines with signifi-
cantly lower toxicity to fibroblasts and peripheral blood cells compared to mithramycin;
while strongly inhibiting Sp1 transcription and reduction in several genes implicated
in tumorigenesis including VEGF, BRCA2, cMyc, and src [38,70]. In one of the most
detailed studies involving ovarian cancer and MTM analogs, MTM-SDK and MTM-SK,
demonstrated considerable inhibition of Sp1 dependent transcription in vitro. Addition-
ally, a mouse model demonstrated significant growth inhibition of subcutaneous ovarian
xenografts for both compounds. In an orthotopic xenograft model, MTM-SDK demon-
strated a significant increase in the median time of abdominal distension/ascites and
median survival. Importantly, the compound was well tolerated without signs of toxicity
in the mouse model [41].

While the recent clinical trials involving mithramycin were underwhelming, there
have been no recent trials investigating mithramycin analogs or combination therapies
with other agents. Novel drug delivery vehicles for mithramycin have been explored with
reported success. It has been demonstrated that polymeric nanoparticles of mithramycin
can be formulated by techniques suitable for amphiphilic compounds [89]. Via a unique
delivery approach, mithramycin loaded nanoparticles have demonstrated considerable
efficacy against pancreatic cancer xenografts [90]. Mithramycin analogs MTM-SK and
MTM-SDK were also placed in polymer micelles in order to increase bioavailability and
drug targeting, with improved cytotoxicity compared to free drug in non-small cell lung
cancer lines [91]. Of note, there have been no investigations of such novel drug delivery
mechanisms for mithramycin or analogs in ovarian cancer.

8. Conclusions

Transcription factor targeting remains a challenging oncological goal. There is ample
evidence to suggest that mithramycin is a potent Sp-1 inhibitor and has demonstrated
anticancer effects across a wide range of malignancies, including ovarian, in pre-clinical
models. The widespread utility of mithramycin continues to be limited by a narrow
therapeutic window and profound hepatotoxicity. However, recent developments in drug
delivery and the generation of novel analogs are particularly promising. Mithramycin
analogs have retained anti-tumor effects in vitro, and limited toxicity has been observed in
animal models while gaining selectivity and improved PK properties. With recent advances
and data demonstrating a profound role of intraperitoneal chemotherapy in ovarian cancer
therapy, a potential role for mithramycin is an uninvestigated and intriguing avenue of
inquiry [92]. One of the most intriguing possibilities is the utility of mithramycin or an
analog for the treatment of platinum-resistant ovarian cancer, an unmet therapeutic need.
There have been several studies demonstrating the in vitro efficacy of mithramycin against
platinum-resistant ovarian cancer, but limited investigation with in vivo models. Further
studies utilizing pre-clinical animal models are warranted to further evaluate potential
toxicities prior to consideration in human subjects. There remains considerable potential for
mithramycin in relation to ovarian cancer therapy, and there are a number of unexplored
areas of investigation.
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