8,728 research outputs found
GRAPE - A Balloon-Borne Gamma-Ray Polarimeter Experiment
This paper reviews the development status of GRAPE (the Gamma-Ray Polarimeter
Experiment), a hard X-ray Compton Polarimeter. The purpose of GRAPE is to
measure the polarization of hard X-rays in the 50-300 keV energy range. We are
particularly interested in X-rays that are emitted from solar flares and
gamma-ray bursts (GRBs), although GRAPE could also be employed in the study of
other astrophysical sources. Accurately measuring the polarization of the
emitted radiation will lead to a better understating of both emission
mechanisms and source geometries. The GRAPE design consists of an array of
plastic scintillators surrounding a central high-Z crystal scintillator. The
azimuthal distribution of photon scatters from the plastic array into the
central calorimeter provides a measure of the polarization fraction and
polarization angle of the incident radiation. The design of the detector
provides sensitivity over a large field-of-view (>pi steradian). The design
facilitates the fabrication of large area arrays with minimal deadspace. This
paper presents the latest design concept and the most recent results from
laboratory tests of a GRAPE science model.Comment: 6 pages; paper presented at the FRASCATI Workshop 2005 on
Multifrequency Behaviour of High Energy Cosmic Sources; submitted to Chinese
Journal of Astronomy and Astrophysic
Developing a Compton Polarimeter to Measure Polarization of Hard X-Rays in the 50-300 keV Energy Range
This paper discusses the latest progress in the development of GRAPE
(Gamma-Ray Polarimeter Experiment), a hard X-ray Compton Polarimeter. The
purpose of GRAPE is to measure the polarization of hard X-rays in the 50-300
keV energy range. We are particularly interested in X-rays that are emitted
from solar flares and gamma-ray bursts (GRBs). Accurately measuring the
polarization of the emitted radiation from these sources will lead, to a better
understating of both the emission mechanisms and source geometries. The GRAPE
design consists of an array of plastic scintillators surrounding a central
high-Z crystal scintillator. We can monitor individual Compton scatters that
occur in the plastics and determine whether the photon is photo absorbed by the
high-Z crystal or not. A Compton scattered photon that is immediately photo
absorbed by the high-Z crystal constitutes a valid event. These valid events
provide us with the interaction locations of each incident photon and
ultimately produces a modulation pattern for the Compton scattering of the
polarized radiation. Comparing with Monte Carlo simulations of a 100% polarized
beam, the level of polarization of the measured beam can then be determined.
The complete array is mounted on a flat-panel multi-anode photomultiplier tube
(MAPMT) that can measure the deposited energies resulting from the photon
interactions. The design of the detector allows for a large field-of-view (>pi
steradian), at the same time offering the ability to be close-packed with
multiple modules in order to reduce deadspace. We plan to present in this paper
the latest laboratory results obtained from GRAPE using partially polarized
radiation sources.Comment: 10 pages; conference paper presented at the SPIE conference "UV,
X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XIV." To be
published in SPIE Conference Proceedings, vol. 589
On Using Summary Statistics from an External Calibration Sample to Correct for Covariate Measurement Error
Background: Covariate measurement error is common in epidemiologic studies. Current methods for correcting measurement error
with information from external calibration samples are insufficient to provide valid adjusted inferences. We consider the problem of estimating the regression of an outcome Y on covariates X and Z, where Y and Z are observed, X is unobserved, but a variable W that measures X with error is observed. Information about measurement error is provided in an external calibration sample where data on X and W (but not Y and Z) are recorded.
Methods: We describe a method that uses summary statistics from the calibration sample to create multiple imputations of the missing values of X in the regression sample, so that the regression coefficients
of Y on X and Z and associated standard errors can be estimated using simple multiple imputation combining rules, yielding
valid statistical inferences under the assumption of a multivariate normal distribution.
Results: The proposed method is shown by simulation to provide better inferences than existing methods, namely the naive method,
classical calibration, and regression calibration, particularly for correction for bias and achieving nominal confidence levels. We also illustrate our method with an example using linear regression to
examine the relation between serum reproductive hormone concentrations
and bone mineral density loss in midlife women in the Michigan Bone Health and Metabolism Study.
Conclusions: Existing methods fail to adjust appropriately for bias due to measurement error in the regression setting, particularly when measurement error is substantial. The proposed method corrects this deficiency.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/91891/1/lit2012guoepid.pd
The Effect of Spatial Gradients in Stellar Mass-to-Light Ratio on Black Hole Mass Measurements
We have tested the effect of spatial gradients in stellar mass-to-light ratio
(Y) on measurements of black hole masses (MBH) derived from stellar orbit
superposition models. Such models construct a static gravitational potential
for a galaxy and its central black hole, but typically assume spatially uniform
Y. We have modeled three giant elliptical galaxies with gradients alpha = d(log
Y)/d(log r) from -0.2 to +0.1. Color and line strength gradients suggest mildly
negative alpha in these galaxies. Introducing a negative (positive) gradient in
Y increases (decreases) the enclosed stellar mass near the center of the galaxy
and leads to systematically smaller (larger) MBH measurements. For models with
alpha = -0.2, the best-fit values of MBH are 28%, 27%, and 17% lower than the
constant-Y case, in NGC 3842, NGC 6086, and NGC 7768, respectively. For alpha =
+0.1, MBH are 14%, 22%, and 17% higher than the constant-Y case for the three
respective galaxies. For NGC 3842 and NGC 6086, this bias is comparable to the
statistical errors from individual modeling trials. At larger radii, negative
(positive) gradients in Y cause the total stellar mass to decrease (increase)
and the dark matter fraction within one effective radius to increase
(decrease).Comment: 6 pages, 4 figures, 1 table. To appear in ApJ
COMPTEL Observations of the Gamma-Ray Blazar PKS 1622-297
We report results of observations and analyses on the gamma-ray blazar PKS
1622-297, with emphasis on the COMPTEL data (0.75 - 30 MeV) collected between
April 1991 and November 1997. PKS 1622-297 was detected as a source of
gamma-rays by the EGRET experiment aboard CGRO in 1995 during a gamma-ray
outburst at energies above 100 MeV lasting for five weeks.
In this time period the blazar was significantly (~ 5.9 sigma) detected by
COMPTEL at 10-30 MeV. At lower COMPTEL energies the detection is marginal,
resulting in a hard MeV spectrum.
The combined COMPTEL/EGRET energy spectrum shows a break at MeV energies. The
broad-band spectrum (radio - gamma-rays) shows that the gamma-ray emission
dominates the overall power output. On top of the 5-week gamma-ray outburst,
EGRET detected a huge flare lasting for > 1 day. Enhanced MeV emission (10 - 30
MeV) is found near the time of this flare, suggesting a possible time delay
with respect to the emission above 100 MeV. Outside the 5-week flaring period
in 1995, we do not detect MeV emission from PKS 1622-297.Comment: 10 pages including 9 figures, accepted for publication in A&
Reversible skew laurent polynomial rings and deformations of poisson automorphisms
A skew Laurent polynomial ring S = R[x(+/- 1); alpha] is reversible if it has a reversing automorphism, that is, an automorphism theta of period 2 that transposes x and x(-1) and restricts to an automorphism gamma of R with gamma = gamma(-1). We study invariants for reversing automorphisms and apply our methods to determine the rings of invariants of reversing automorphisms of the two most familiar examples of simple skew Laurent polynomial rings, namely a localization of the enveloping algebra of the two-dimensional non-abelian solvable Lie algebra and the coordinate ring of the quantum torus, both of which are deformations of Poisson algebras over the base field F. Their reversing automorphisms are deformations of Poisson automorphisms of those Poisson algebras. In each case, the ring of invariants of the Poisson automorphism is the coordinate ring B of a surface in F-3 and the ring of invariants S-theta of the reversing automorphism is a deformation of B and is a factor of a deformation of F[x(1), x(2), x(3)] for a Poisson bracket determined by the appropriate surface
A prototype ASIC for APD array readout of scintillating plastic fibers
We report on the development of custom front-end electronics for use with avalanche photodiode (APD) arrays as part of a NASA technology study for the readout of scintillating plastic fibers. APD arrays featuring 64 1 mm square pixels are used. We demonstrate that a pixel of these APD arrays coupled to relatively thin (0.25 mm) and short (15 cm) scintillating plastic fibers can be used to detect and measure the tracks of even minimum ionizing particles (MIPs). An applicationspecific integrated circuit (ASIC) implementation of the electronics is required to produce a detector sufficiently compact for practical use in a flight experiment featuring many thousands of channels. This paper briefly describes the detector concept and performance and presents the design and performance of a four-channel prototype ASIC fabricated using the 0.35 micron TSMC process
- …