63 research outputs found

    Quantitative electron energy-loss spectroscopy (EELS) analyses of lead zirconate titanate

    Get PDF
    Electron energy-loss spectroscopy (EELS) analyses have been performed on a sol–gel deposited lead zirconate titanate film, showing that EELS can be used for heavy as well as light element analysis. The elemental distributions within the sol–gel layers are profiled using the Pb N<sub>6,7</sub>-edges, Zr M-edges, Ti L-edges and O K-edge. A multiple linear least squares fitting procedure was used to extract the Zr signal which overlaps with the Pb signal. Excellent qualitative information has been obtained on the distribution of the four elements. The non-uniform and complementary distributions of Ti and Zr within each sol–gel deposited layer are observed. The metal:oxygen elemental ratios are quantified using experimental standards of PbTiO<sub>3</sub>, PbZrO<sub>3</sub>, ZrO<sub>2</sub> and TiO<sub>2</sub> to provide relevant cross-section ratios. The quantitative results obtained for Ti/O and Pb/O are very good but the Zr/O results are less accurate. Methods of further improving the results are discussed

    Probing magnetic order in EELS of chromite spinels using both multiple scattering (FEFF8.2) and DFT (WIEN2k)

    Get PDF
    The electron energy loss near edge structure on the O K-edge from chromite spinels contains fine structure from the hybridisation of the O p-orbitals and the Cr d-orbitals. Unlike the aluminates, a non-spin polarised calculation of this fine structure differs significantly from experimental observations. This is due to the large magnetic moment on the Cr. Calculations using simplified collinear ordering of the spins and the local spin density approximation give much improved agreement. A real space multiple scattering formalism and a reciprocal space density functional formalism give results in substantial agreement. In general, the actual spin arrangement of these chromites is not known since they are typically frustrated magnetic systems with ordering temperatures in the 10–20 K range. The calculations are based on the hypothesis that dynamic short range order persists to room temperature over the time scale of the interaction with the fast electron. However, it is possible that the observed effects are due to the strong paramagnetism present at room temperatures but which it is not possible to simulate accurately at present

    Advanced nanoanalysis of a Hf-based high-<i>k</i> dielectric stack prior to activation

    Get PDF
    Analytical electron microscopy techniques are used to investigate elemental distributions across a high-&lt;i&gt;k&lt;/i&gt; dielectric stack with a metal gate. Electron energy-loss spectroscopy results from a Si(100)/SiO2/HfO2/TiN/a-Si gate stack confirm the presence of an oxide interfacial phase at the TiN/a-Si interface prior to activation of the stack

    Persistent template effect in InAs/GaAs quantum dot bilayers

    Get PDF
    The dependence of the optical properties of InAs/GaAs quantum dot(QD) bilayers on seed layer growth temperature and second layer InAs coverage is investigated. As the seed layer growth temperature is increased, a low density of large QDs is obtained. This results in a concomitant increase in dot size in the second layer, which extends their emission wavelength, reaching a saturation value of around 1400 nm at room temperature for GaAs-capped bilayers. Capping the second dot layer with InGaAs results in a further extension of the emission wavelength, to 1515 nm at room temperature with a narrow linewidth of 22 meV. Addition of more InAs to high density bilayers does not result in a significant extension of emission wavelength as most additional material migrates to coalesced InAs islands but, in contrast to single layers, a substantial population of regular QDs remains

    An electron energy-loss spectroscopy investigation of zeolite dealumination

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:D061582 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Probing the Electronic Structure of Transition Metal Oxides using Electron Energy-Loss Spectroscopy

    No full text

    ELNES investigations of the structure and electronic properties of chromium spinels

    No full text
    A series of spinels have been studied to investigate the influence of the occupation of d orbitals on the energy loss near edge structure (ELNES). In this paper the oxygen K edges from a variety of chromium spinels and magnesium aluminate are presented. Extra fine structure is observed from compounds containing transition metals with partially filled d orbitals. This is assigned to transitions to states created by hybridisation of the oxygen 2p and transition metal 3d orbitals at the bottom of the conduction band

    Valence losses at interfaces in aluminium alloys

    No full text
    No abstract available

    Understanding gate oxide materials: ELNES of Hf and Zr compounds

    No full text
    The local coordination environment of the silicates and oxides of Hf and Zr have been investigated using both experimental ELNES data and theoretical modelling of the near-edge structure
    • …
    corecore