19 research outputs found

    Balanced electron-hole transport in spin-orbit semimetal SrIrO3 heterostructures

    Get PDF
    Relating the band structure of correlated semimetals to their transport properties is a complex and often open issue. The partial occupation of numerous electron and hole bands can result in properties that are seemingly in contrast with one another, complicating the extraction of the transport coefficients of different bands. The 5d oxide SrIrO3 hosts parabolic bands of heavy holes and light electrons in gapped Dirac cones due to the interplay between electron-electron interactions and spin-orbit coupling. We present a multifold approach relying on different experimental techniques and theoretical calculations to disentangle its complex electronic properties. By combining magnetotransport and thermoelectric measurements in a field-effect geometry with first-principles calculations, we quantitatively determine the transport coefficients of different conduction channels. Despite their different dispersion relationships, electrons and holes are found to have strikingly similar transport coefficients, yielding a holelike response under field-effect and thermoelectric measurements and a linear, electronlike Hall effect up to 33 T.Comment: 5 pages, 4 figure

    Suppression of superconductivity and enhanced critical field anisotropy in thin flakes of FeSe

    Get PDF
    FeSe is a unique superconductor that can be manipulated to enhance its superconductivity using different routes, while ist monolayer form grown on different substrates reaches a record high temperature for a two-dimensional system. In order to understand the role played by the substrate and the reduced dimensionality on superconductivity, we examine the superconducting properties of exfoliated FeSe thin flakes by reducing the thickness from bulk down towards 9 nm. Magnetotransport measurements performed in magnetic fields up to 16 T and temperatures down to 2 K help to build up complete superconducting phase diagrams of different thickness flakes. While the thick flakes resemble the bulk behaviour, by reducing the thickness the superconductivity of FeSe flakes is suppressed. The observation of the vortex-antivortex unbinding transition in different flakes provide a direct signature of a dominant two-dimensional pairing channel. However, the upper critical field reflects the evolution of the multi-band nature of superconductivity in FeSe becoming highly two-dimensional and strongly anisotropic only in the thin limit. Our study provides detailed insights into the evolution of the superconducting properties of a multi-band superconductor FeSe in the thin limit in the absence of a dopant substrate

    Significant change in the electronic behavior associated with structural distortions in the single crystalline SrAg4As2

    Full text link
    We report a combined study of transport and thermodynamic measurements on the layered pnictide material SrAg4As2. Upon cooling, a drop in electrical and Hall resistivity, a jump in heat capacity and an increase in susceptibility and magnetoresistance (MR) are observed around 110 K. These observations suggest that non-magnetic phase transitions emerge at around 110 K, that are likely associated with structural distortions. In sharp contrast with the first-principles calculations based on the crystal structure at room temperature, quantum oscillations reveal small Fermi pockets with light effective masses, suggesting a significant change in the Fermi surface topology caused by the low temperature structural distortion. No superconductivity emerges in SrAg4_4As2_2 down to 2 K and under pressures up to 2.13 GPa; instead, the low temperature structural distortion increases linearly with temperature at a rate of ~13 K/GPa above 0.89 GPa

    Unconventional localization of electrons inside of a nematic electronic phase

    Get PDF
    The magnetotransport behaviour inside the nematic phase of bulk FeSe reveals unusual multiband effects that cannot be reconciled with a simple two-band approximation proposed by surface-sensitive spectroscopic probes. In order to understand the role played by the multiband electronic structure and the degree of two-dimensionality we have investigated the electronic properties of exfoliated flakes of FeSe by reducing their thickness. Based on magnetotransport and Hall resistivity measurements, we assess the mobility spectrum that suggests an unusual asymmetry between the mobilities of the electrons and holes with the electron carriers becoming localized inside the nematic phase. Quantum oscillations in magnetic fields up to 38 T indicate the presence of a hole-like quasiparticle with a lighter effective mass and a quantum scattering time three times shorter, as compared with bulk FeSe. The observed localization of negative charge carriers by reducing dimensionality can be driven by orbitally-dependent correlation effects, enhanced interband spin-fluctuations or a Lifshitz-like transition which affect mainly the electron bands. The electronic localization leads to a fragile two-dimensional superconductivity in thin flakes of FeSe, in contrast to the two-dimensional high-Tc induced with electron doping via dosing or using a suitable interface.Comment: 22 pages, 14 figure

    Lifshitz transition enabling superconducting dome around the quantum critical point in TiSe2_2

    Full text link
    Superconductivity often emerges as a dome around a quantum critical point (QCP) where long-range order is suppressed to zero temperature. So far, this has been mostly studied in magnetically ordered materials. By contrast, the interplay between charge order and superconductivity at a QCP is not fully understood. Here, we present resistance measurements proving that a dome of superconductivity surrounds the charge-density-wave (CDW) QCP in pristine samples of 1TT-TiSe2_2 tuned with hydrostatic pressure. Furthermore, we use quantum oscillation measurements to show that the superconductivity sets in at a Lifshitz transition in the electronic band structure. We use density functional theory to identify the Fermi pockets enabling superconductivity: large electron and hole pockets connected by the CDW wave vector Q⃗\vec{Q} which emerge upon partial suppression of the zero-pressure CDW gap. Hence, we conclude that superconductivity is of interband type enabled by the presence of hole and electron bands connected by the CDW Q⃗\vec{Q} vector. Earlier calculations show that interband interactions are repulsive, which suggests that unconventional s±_{\pm} superconductivity is realised in TiSe2_2 - similar to the iron pnictides. These results highlight the importance of Lifshitz transitions in realising unconventional superconductivity and help understand its interaction with CDW order in numerous materials.Comment: 21 pages, 5 figure

    Quenching a Weyl-Kondo semimetal by magnetic field

    Full text link
    With the advent of topology in electronic materials the number of predicted quantum phases has literally exploded. Most of them, however, still await firm experimental identification. In strongly correlated electron systems, scanning their low-temperature phase diagrams by varying a nonthermal control parameter has been instrumental in delineating phases defined by a Landau order parameter. Here we show that this approach is versatile also for strongly correlated topological phases. We use Hall effect measurements to probe how the time reversal symmetry invariant Weyl-Kondo semimetal Ce3_3Bi4_4Pd3_3 transforms under magnetic-field tuning. We detect an intriguing two-stage transition, which we associate with an annihilation of the Weyl nodes, making the system more insulating, and a consecutive transition to a heavy fermion metal phase. We expect our work to stimulate tuning studies in related systems, thereby advancing the much needed identification of organizing principles for strongly correlated electronic topology.Comment: 4 figures, 19 page

    Truncated mass divergence in a Mott metal

    Get PDF
    The Mott metal–insulator transition represents one of the most fundamental phenomena in condensed matter physics. Yet, basic tenets of the canonical Brinkman-Rice picture of Mott localization remain to be tested experimentally by quantum oscillation measurements that directly probe the quasiparticle Fermi surface and effective mass. By extending this technique to high pressure, we have examined the metallic state on the threshold of Mott localization in clean, undoped crystals of NiS2. We find that i) on approaching Mott localization, the quasiparticle mass is strongly enhanced, whereas the Fermi surface remains essentially unchanged; ii) the quasiparticle mass closely follows the divergent form predicted theoretically, establishing charge carrier slowdown as the driver for the metal–insulator transition; iii) this mass divergence is truncated by the metal–insulator transition, placing the Mott critical point inside the insulating section of the phase diagram. The inaccessibility of the Mott critical point in NiS2 parallels findings at the threshold of ferromagnetism in clean metallic systems, in which criticality at low temperature is almost universally interrupted by first-order transitions or novel emergent phases such as incommensurate magnetic order or unconventional superconductivity
    corecore