215 research outputs found

    Space Transportation System Availability Requirements and Its Influencing Attributes Relationships

    Get PDF
    It is important that engineering and management accept the need for an availability requirement that is derived with its influencing attributes. It is the intent of this paper to provide the visibility of relationships of these major attribute drivers (variables) to each other and the resultant system inherent availability. Also important to provide bounds of the variables providing engineering the insight required to control the system's engineering solution, e.g., these influencing attributes become design requirements also. These variables will drive the need to provide integration of similar discipline functions or technology selection to allow control of the total parts count. The relationship of selecting a reliability requirement will place a constraint on parts count to achieve a given availability requirement or if allowed to increase the parts count will drive the system reliability requirement higher. They also provide the understanding for the relationship of mean repair time (or mean down time) to maintainability, e.g., accessibility for repair, and both the mean time between failure, e.g., reliability of hardware and availability. The concerns and importance of achieving a strong availability requirement is driven by the need for affordability, the choice of using the two launch solution for the single space application, or the need to control the spare parts count needed to support the long stay in either orbit or on the surface of the moon. Understanding the requirements before starting the architectural design concept will avoid considerable time and money required to iterate the design to meet the redesign and assessment process required to achieve the results required of the customer's space transportation system. In fact the impact to the schedule to being able to deliver the system that meets the customer's needs, goals, and objectives may cause the customer to compromise his desired operational goal and objectives resulting in considerable increased life cycle cost of the fielded space transportation system

    Space Transportation System Availability Requirement and Its Influencing Attributes Relationships

    Get PDF
    It is important that engineering and management accept the need for an availability requirement that is derived with its influencing attributes. It is the intent of this paper to provide the visibility of relationships of these major attribute drivers (variables) to each other and the resultant system inherent availability. Also important to provide bounds of the variables providing engineering the insight required to control the system's engineering solution, e.g., these influencing attributes become design requirements also. These variables will drive the need to provide integration of similar discipline functions or technology selection to allow control of the total parts count. The relationship of selecting a reliability requirement will place a constraint on parts count to achieve a given availability requirement or if allowed to increase the parts count will drive the system reliability requirement higher. They also provide the understanding for the relationship of mean repair time (or mean down time) to maintainability, e.g., accessibility for repair, and both the mean time between failure, e.g., reliability of hardware and availability. The concerns and importance of achieving a strong availability requirement is driven by the need for affordability, the choice of using the two launch solution for the single space application, or the need to control the spare parts count needed to support the long stay in either orbit or on the surface of the moon. Understanding the requirements before starting the architectural design concept will avoid considerable time and money required to iterate the design to meet the redesign and assessment process required to achieve the results required of the customer's space transportation system. In fact the impact to the schedule to being able to deliver the system that meets the customer's needs, goals, and objectives may cause the customer to compromise his desired operational goal and objectives resulting in considerable increased life cycle cost of the fielded space transportation system

    High-Payoff Space Transportation Design Approach with a Technology Integration Strategy

    Get PDF
    A general architectural design sequence is described to create a highly efficient, operable, and supportable design that achieves an affordable, repeatable, and sustainable transportation function. The paper covers the following aspects of this approach in more detail: (1) vehicle architectural concept considerations (including important strategies for greater reusability); (2) vehicle element propulsion system packaging considerations; (3) vehicle element functional definition; (4) external ground servicing and access considerations; and, (5) simplified guidance, navigation, flight control and avionics communications considerations. Additionally, a technology integration strategy is forwarded that includes: (a) ground and flight test prior to production commitments; (b) parallel stage propellant storage, such as concentric-nested tanks; (c) high thrust, LOX-rich, LOX-cooled first stage earth-to-orbit main engine; (d) non-toxic, day-of-launch-loaded propellants for upper stages and in-space propulsion; (e) electric propulsion and aero stage control

    Astrophysical S factor for the radiative capture 12N(p,gamma)13O determined from the 14N(12N,13O)13C proton transfer reaction

    Get PDF
    The cross section of the radiative proton capture reaction on the drip line nucleus 12N was investigated using the Asymptotic Normalization Coefficient (ANC) method. We have used the 14N(12N,13O)13C proton transfer reaction at 12 MeV/nucleon to extract the ANC for 13O -> 12N + p and calculate from it the direct component of the astrophysical S factor of the 12N(p,gamma)13O reaction. The optical potentials used and the DWBA analysis of the proton transfer reaction are discussed. For the entrance channel, the optical potential was inferred from an elastic scattering measurement carried out at the same time with the transfer measurement. From the transfer, we determined the square of the ANC, C^2(13Og.s.) = 2.53 +/- 0.30 fm-1, and hence a value of 0.33(4) keVb was obtained for the direct astrophysical S factor at zero energy. Constructive interference at low energies between the direct and resonant captures leads to an enhancement of Stotal(0) = 0.42(5) keVb. The 12N(p,gamma)13O reaction was investigated in relation to the evolution of hydrogen-rich massive Population III stars, for the role that it may play in the hot pp-chain nuclear burning processes, possibly occurring in such objects.Comment: 15 pages, 10 figures, 3 tables submitted to Phys. Rev.

    Performance evaluation of novel square-bordered position-sensitive silicon detectors with four-corner readout

    Full text link
    We report on a recently developed novel type of large area (62 mm x 62 mm) position sensitive silicon detector with four-corner readout. It consists of a square-shaped ion-implanted resistive anode framed by additional low-resistivity strips with resistances smaller than the anode surface resistance by a factor of 2. The detector position linearity, position resolution, and energy resolution were measured with alpha-particles and heavy ions. In-beam experimental results reveal a position resolution below 1 mm (FWHM) and a very good non-linearity of less than 1% (rms). The energy resolution determined from 228Th alpha source measurements is around 2% (FWHM).Comment: 13 pages, 10 figures, submitted to Nucl. Instr. and Meth.

    How can project-based mentorships enhance the dietetics profession?

    Get PDF
    Research Outcomes: The RD Mentorship Program is designed to provide dietetic students (mentee) with the opportunity to gain one-on-one experience with a Registered Dietitian (mentor). This nationwide program evaluates project-based mentorships. Methods: Potential mentors and mentees completed an initial survey that indicated mentor projects and mentee interests. Mentees (n=378) were matched to a mentor (n=264) based on their project preferences and interests. Matches met virtually monthly from September 2020 to April 2021. A mid-program evaluation was sent out in December 2020. Analysis: Descriptive statistics were used to analyze the data Results: The mid-program evaluation indicated that 96% (n=265) of participants found the application and matching process good to very good. The majority of mentee participants liked the variety of dietitians and projects. Some of the projects were, but not limited to, the following: social media and website development, food photography, grocery store tours, virtually shadowing, recipe development, community involvement projects, meal plans, writing and research, analyzing recipes for allergens, literature reviews, cooking classes, case studies, creating exams, resume building, newsletters, course development, interviewing skills development, public policy task force, community assessments, reviewing needs assessments, menu reviews and development, podcast development and patient education handouts. Conclusion: Through the RD Mentorship Program’s project-based mentorship format, mentees are exposed to a broad range of activities that Registered Dietitians perform across many sectors. These projects help to build relationships and offer valuable experiential learning opportunities in dietetics

    Cost-Performance Parametrics for Transporting Small Packages to the Mars Vicinity

    Get PDF
    This paper explores the costs and performance required to deliver a small-sized payload package (CubeSat-sized, for instance) to various transportation nodes en route to Mars and near-Mars destinations (such as Mars moons, Phobos and Deimos). Needed is a contemporary assessment and summary compilation of transportation metrics that factor both performance and affordability of modern and emerging delivery capabilities. The paper brings together: (a) required mass transport gear ratios in delivering payload from Earths surface to the Mars vicinity, (b) the cyclical energy required for delivery, and (c) the affordability and availability of various means of transporting material across various Earth-Moon vicinity and Near-Mars vicinity nodes relevant to Mars transportation. Examples for unit deliveries are computed and tabulated, using a CubeSat as a unit, for periodic near-Mars delivery campaign scenarios

    An Affordability Comparison Tool (ACT) for Space Transportation

    Get PDF
    NASA bas recently emphasized the importance of affordability for Commercial Crew Development Program (CCDP), Space Launch Systems (SLS) and Multi-Purpose Crew Vehicle (MPCV). System architects and designers are challenged to come up with architectures and designs that do not bust the budget. This paper describes the Affordability Comparison Tool (ACT) analyzes different systems or architecture configurations for affordability that allows for a comparison of: total life cycle cost; annual recurring costs, affordability figures-of-merit, such as cost per pound, cost per seat, and cost per flight, as well as productivity measures, such as payload throughput. Although ACT is not a deterministic model, the paper develops algorithms and parametric factors that use characteristics of the architectures or systems being compared to produce important system outcomes (figures-of-merit). Example applications of outcome figures-of-merit are also documented to provide the designer with information on the relative affordability and productivity of different space transportation applications
    • …
    corecore