Cost-Performance-Parametrics for Transporting Small Packages to the Mars Vicinity

Presented by C. McCleskey/NASAKSC
Co-authors:
R. Lepsch/NASA LaRC
J. Martin/NASA LaRC M. Popescu/NAIC

Why Small Packages to Mars?

- A permanent presence on Mars will be a logistical challenge

Arriving mass on continual basis is needed during build-up and assembly phase to augment the delivery of large/mid-size elements

- In addition to seven (7) heavy lift missions, many smaller deliveries required:
- $15-20 \mathrm{t}=7$ flights
- 10-15 t=14 flights
- $5-10 \mathrm{t}=7$ flights
- <5 t = 87 flights
- Outfitting and resupply needs as build-up occurs
- Low cost, low mass services: resupply, imaging, comm/navigation
- Arriving mass on continual basis is needed during sustainment
- Much smaller mass throughput required during sustainment than build-up
- Critical spares, commodities, components, and equipment-often driven by unplanned events and unknowns
- Frequency often critical need-will a 2-year dwell between critical supplies be acceptable?
- Standardized packaging/containerization
- Starts with the small standard shipping packages and aggregates to the larger shipping containers

Example Mars Surface Facility Masses (Metric Tons)

[from Koelle, H. H., Lunar Base Quarterly, vol. 11, No. 2, April 2003, Berlin, DE]

Example Earth-Mars Direct Transit Modes

(Earth/Lunar distant aggregation methods also under review, not covered in this initial investigation)

1. Direct Transfer (All-up Single launch)

2. LEO Parking/Departure

Typical plot of total $\Delta \mathrm{V}(\mathrm{km} / \mathrm{s})$ for impulse case Mars transits from LD-HEO to 10-sol Mars orbit (2034-2035)

Plots of total $\Delta \mathrm{V}(\mathrm{km} / \mathrm{s})$ for impulse case Mars transits from LD-HEO to 10 -sol Mars orbit (2017-2035)

Total Delta $V(\mathrm{~km} / \mathrm{s})$

Transit System Assumptions (Initial Investigation)

TRANSIT SPACECRAFT	
	CHEMICAL
Fuel	Malue
Onits	
Oxidizer	NTO
$\mathrm{I}_{\text {sp }}$	315 s
Mass ratio	0.1085
Propellant mass fraction	0.8915
Engine mass fraction	0.0060
Fuel tank mass fraction	0.0221
Oxidizer tank mass fraction	0.0222
Structural mass fraction	0.0045
Dry mass fraction	0.0548
Payload mass fraction	0.0537

DRY MASS TABLE (EP)	
	value units
Propellant Tank characterisitics	
Density	$3080 \mathrm{~kg} / \mathrm{m3}$
Safety factor	4
Material specific density ()	$4 \mathrm{~kg} / \mathrm{m3} / \mathrm{Mpa}$
MEOP pressure	23.44 Mpa
Propellant fraction \%	27.5%
Structural coefficient, εs	0.04

DRY MASS TABLE	
	value units
Fuel Tank characterisitics	
Density	$875 \mathrm{~kg} / \mathrm{m} 3$
Safety factor	4
Material specific density ()	$4 \mathrm{~kg} / \mathrm{m} 3 / \mathrm{Mpa}$
MEOP pressure	1.8 Mpa
Propellant fraction \%	37.74 pct (\%)
Oxidizer Tank characterisitics	
Density	$1443 \mathrm{~kg} / \mathrm{m} 3$
Safety factor	4
Material specific density	$4 \mathrm{~kg} / \mathrm{m} 3 / \mathrm{Mpa}$
MEOP pressure	1.8 Mpa
Propellant fraction \%	62.26 pct (\%)
Structural coefficient, ε s	0.04
TRANSIT SPACECRAFT - ELECTRIC	
	value units
Propellant	Xe
$\mathrm{I}_{\text {sp }}$	3,000 s
Propellant mass fraction	0.2749
Propulsion Power/Mass	2.7000 W/kg
Thruster efficiency	0.6000
PPU and Power Efficiency	0.9500
Propulsion alpha	$0.0300 \mathrm{~kg} / \mathrm{W}$
Solar power alpha	$0.0100 \mathrm{~kg} / \mathrm{W}$
Duty cycle (correction)	0.9000
Structural mass fraction	0.0344
Dry mass fraction	0.2890

- Spacecraft sizing approach used simple characteristics/mass fraction
- LEO to LD-HEO scale factor of 30% found across launch vehicle classes
- Key Isp parameters were 315 s (chemical); 3,000 s (electric)

Example plot of chemical system departure and arrival masses across two synodic cycles (nano-micro launch class delivery case)

Constant thrust orbital transfer for electric propulsion case in optimal (left) and minimal payload (right) transfers

--x- - Vehicle + p / I mass in HEO
-ロ—Accumulated payload mass to Mars orbit

Affordability and flight rate capability parametric plots under investigation

Earth-to-orbit (ETO) Launch Price-per-kg
(Zapata, E., CRASTE 2014)

Early results for high-frequency, variable capacity Mars transits from LD-HEO

Variety of size classes to construct and sustain large space facilities

In-Space Facility Assembly Campaign
(ISS, 1998-2011)

Conclusions

- Prospects promising for smaller class systems using higher frequency full synodic cycle deliveries
- Could augment assembly \& logistics; will explore future packaging and shipping options
- Transit time and trajectory optimization needed
- Methods of varying cadence/distribution of departures and arrivals should be investigated
- Size class roles/options need further investigation to maximize logistical deliveries by shipment size
- Need more data on support system functions and their logistics masses/rates required
- Investigation of different concepts for lunar and Mars vicinity waypoint operations-e.g., aggregated shipments
- Further investigation of affordability analysis warranted (i.e., from Earth-Surface to Mars surface)
- Commercial/economic potential-service sector implications of packaged cargo delivery rather than monolithic designs (i.e., cost of service to one player is the revenue to another)
- Package deliveries to Mars-small and large—may be enabling to support ambitious plans

