Cost-Performance Parametrics for Transporting Small Packages to the Mars Vicinity

Presented by C. McCleskey/NASA KSC Co-authors: R. Lepsch/NASA LaRC J. Martin/NASA LaRC M. Popescu/NAIC

CRASTE Conference--Chantilly, Virginia--June 23, 2015

Why Small Packages to Mars?

A permanent presence on Mars will be a logistical challenge

- Arriving mass on continual basis is needed during build-up and assembly phase to augment the delivery of large/mid-size elements
 - In addition to seven (7) heavy lift missions, many smaller deliveries required:
 - 15-20 t = 7 flights
 - 10-15 t = 14 flights
 - 5-10 t = 7 flights
 - <5 t = 87 flights
 - Outfitting and resupply needs as build-up occurs
 - Low cost, low mass services: resupply, imaging, comm/navigation
- Arriving mass on continual basis is needed during sustainment
 - Much smaller mass throughput required during sustainment than build-up
 - Critical spares, commodities, components, and equipment—often driven by unplanned events and unknowns
 - Frequency often critical need— will a 2-year dwell between critical supplies be acceptable?
- Standardized packaging/containerization
 - Starts with the small standard shipping packages and aggregates to the larger shipping containers

Example Mars Surface Facility Masses (Metric Tons)

[from Koelle, H. H., Lunar Base Quarterly, vol. 11, No. 2, April 2003, Berlin, DE]

Example Earth-Mars Direct Transit Modes (Earth/Lunar distant aggregation methods also under review, not covered in this initial investigation)

Typical plot of total ΔV (km/s) for impulse case Mars transits from LD-HEO to 10-sol Mars orbit (2034-2035)

Plots of total ΔV (km/s) for impulse case Mars transits from LD-HEO to 10-sol Mars orbit (2017-2035)

Total Delta V(km/s)

Transit System Assumptions (Initial Investigation)

TRANSIT SPACECE	RAFT - CHEMICAL
	<u>value</u> <u>units</u>
Fuel	MMH
Oxidizer	NTÓ
I _{sp}	315 s
Mass ratio	0.1085
Propellant mass fraction	0.8915
Engine mass fraction	0.0060
Fuel tank mass fraction	0.0221
Oxidizer tank mass fraction	0.0222
Structural mass fraction	0.0045
Dry mass fraction	0.0548
Payload mass fraction	0.0537

DRY MASS T	TABLE	
	<u>value</u> <u>units</u>	
Fuel Tank characterisitics		
Density	875 kg/m3	
Safety factor	4	
Material specific density ()	4 kg/m3/Mpa	
MEOP pressure	1.8 Mpa	
Propellant fraction %	37.74 pct (%)	
Oxidizer Tank characterisitics		
Density	1443 kg/m3	
Safety factor	4	
Material specific density	4 kg/m3/Mpa	
MEOP pressure	1.8 Mpa	
Propellant fraction %	62.26 pct (%)	
<u>Structural coefficient, ɛs</u>	0.04	

DRY MASS TABLE (EP)					
	<u>value</u> <u>units</u>				
Propellant Tank characterisitics					
Density	3080 kg/m3				
Safety factor	4				
Material specific density ()	4 kg/m3/Mpa				
MEOP pressure	23.44 Mpa				
Propellant fraction %	27.5 %				
Structural coefficient, ɛs	0.04				

TRANSIT SPACECE	RAFT - ELECTRIC	
	value units	
Propellant	Xe	
I _{sp}	3,000 s	
Propellant mass fraction	0.2749	
Propulsion Power/Mass	2.7000 W/kg	
Thruster efficiency	0.6000	
PPU and Power Efficiency	0.9500	
Propulsion alpha	0.0300 kg/W	
Solar power alpha	0.0100 kg/W	
Duty cycle (correction)	0.9000	
Structural mass fraction	0.0344	
Dry mass fraction	0.2890	

- Spacecraft sizing approach used simple characteristics/mass fraction
- LEO to LD-HEO scale factor of 30% found across launch vehicle classes
- Key Isp parameters were 315 s (chemical); 3,000 s (electric)

Example plot of chemical system departure and arrival masses across two synodic cycles (nano-micro launch class delivery case)

Constant thrust orbital transfer for electric propulsion case in optimal (left) and minimal payload (right) transfers

- --- Vehicle + p/l mass in HEO —--- Accum

----- Accumulated payload mass to Mars orbit

Affordability and flight rate capability parametric plots under investigation

45

40 flts/cycle

35

30

25

20

15

10

0

4 D 5

σ 2

100,000

synodic flight rate,

Σ

Early results for high-frequency, variable capacity Mars transits from LD-HEO

	CHEMICAL PROPULSION MARS TRANSITS	Nano-Mic	roLauncher	Small L	auncher	Mediun	n Launcher	Heav	y Launch er	Supe	r Heavy Launcher	
	ETO Launch Vehicle Capacity to LEO 28.5°(kg/flt)	1	.00	1,	000	10),000	:	25,000		100,000	
Assu	umed Avg Flt Rate Capacity per veh type (Flts/syn cycle)		26	1	19		11		8		3	1
5	Spacecraft + Payload (kg/flt to LD-HEO w/ 0.313 fraction)	3	31	3	13	3	,130		7,825		31,300	N.
0	Cumulative Delivery to LD-HEO (kg/syn cycle to LD-HEO)	4	-07	4,	069	30	,584		51,408		71,190	
	Estimated LEO CPK High Average(\$/kg)	\$20	0,000	\$63	,240	\$20	0,000	5	12,640		\$6,320	
	Estimated LEO CPK Low Average(\$/kg)	\$53	3, 410	\$16	,889	889 \$5			\$3,377		\$1,688	
	ETO High CPF (\$/fit)	\$20,0	00,000	\$63,2	00,000	\$200,	\$200,000,000		6,000,000	\$632,000,000	\$632,000,000	
F	ETO Low CPF (\$/fit)	\$5,34	40,000	\$16,8	80,000	\$53,4	410,000	\$84	1,420,000		\$168,800,000	
	ELECTRIC PROPULSION		Nano-Micro	Launcher	Small La	uncher	Medium L	auncher	Heavy Lau	ncher	Super Heavy La	unch
	MARS TRANSITS										Super neavy Laun	
	ETO Launch Vehicle Capacity to LEO 2	8.5°(kg/flt)	100)	1,0	00	10,0	00	25,00	0	100,000	
	Assumed Avg Flt Rate Capacity per veh type (Flts	s/syn cycle)	26		19)	11		8		3	
	Spacecraft + Payload (kg/flt to LD-HEO w/ 0.32	13 fraction)	31		31	3	3,13	0	7,825	5	31,300	
	Cumulative Delivery to LD-HEO (kg/syn cycle	to LD-HEO)	626		5,9	47	30,58	34	51,40	8	71,190	
FIts	Estimated LEO CPK High Ave	erage(\$/kg) \$200,000		100	\$63,4	240	\$20,000		\$12,64	40 	\$6,320	
EO	Estimated LEU CPK Low Ave	rage(\$/kg)	\$53,4 ¢20.000	10	\$10,0 ¢c2 20	0,000	\$5,34 6200.00	\$5,341		/	\$1,688 ¢c22,000,00	10
4	ETO High	CPF (Ş/JII)	\$20,000	,000	\$03,20 ¢16.00	0,000	JUU \$200,000		\$310,000,	,000	\$032,000,00	0 10
	ETO Cost per supedie such High (\$/	CPF (Ş/JIL)	\$3,340, \$400.00	000	\$10,880,000 \$1,200,800,000		\$53,410,000		\$04,420, \$2,529,000	000	\$100,000,00	.U 100
	ETO Cost per synouic cycle-High (\$/	(campaign)	\$400,000	0,000 n nnn	\$1,200,0 \$320.70	100,000 10 000	\$2,200,000,000 \$587 500 000		\$2,528,000		\$1,890,000,0	00
	Derived ID HEO CPK	uinpuigii) ⊔iah (¢/ka)	\$638.0	0,000 200	\$201	9000 900	\$71 9	0,000	\$49.10	,000 10	\$26 600	U
	Derived LD HEO CPK-	low (\$/ka)	\$030,5 \$170 f	500	\$53	900 900	\$19.2	00	\$13.10	ה חח	\$7.100	
	Available Monthly Mars Transits (opportunities/	$(syn cycle)^1$	20		20)	20	00	20		20	
	Launcher-Capable Transit Opportunities (xfers	(syn cycle)	26		19)	11		8		3	
	Transferred at Optimum Alignment	(kg/transit)	18		17	5	1,75	4	4,387	7	17,546	
5	Mars 10Sol Accumulation Rate (kg	/syn cycle)	350)	3,3	25	19,2	94	35,093	3	52,638	
Xfe	Estimated Transit CPK High Ave	rage(\$/kg)	\$747,8	379	\$236,	500	\$74,7	88	\$47,30	00	\$23,650	
lars	Estimated Transit CPK Low Ave	rage(\$/kg)	\$134,3	397	\$42,	500	\$13,4	40	\$8,500	0	\$4,250	
2	Cost-per Transit (expendable)	High (\$/flt)	\$23,400	,000	\$74,02	0,000	\$234,08	0,000	\$370,120,	,000	\$740,240,00)0
5	Cost-per Transit (expendable)	Low (\$/flt)	\$4,200,	000	\$13,30	0,000	\$42,060	0,000	\$66,510,	000	\$133,020,00)0
	Transit Cost per synodic cycle-High (\$/	'campaign)	\$468,000	0,000	\$1,406,3	00,000	\$2,574,80	00,000	\$2,960,900	0,000	\$2,220,700,0	00
	Transit Cost per synodic cycle-Low (\$/	'campaign)	\$84,000	,000	\$252,70	00,000	\$462,60	0,000	\$532,000,	,000	\$399,000,00)0
Xfr	Mars Orbit Transfers (10-s	sol to 1-sol)	-		19)	11		8		3	
sol	M10-sol to 1-sol circulari	ization loss	-		0.0	35	0.03	5	0.035	5	0.035	
1,	M1Sol Accumulation Rate (kg	g/syn cycle)	-		3,2	09	18,6	19	33,86	5	50,796	
ge	Ma	rs Landings	-		19	9	11		8		3	
urfa	Mars 1-sol to surface tra	ansfer loss	-		1.2	22	1.2	2	1.22		1.22	
SI	Surface Facility Build-up Rate w/ 22% landing loss (kg	/syn cycle)	-		2,6	30	15,2	61	27,75	8	41,636	

¹ 2034/35 synodic cycle opportunities

2034

Variety of size classes to construct and sustain large space facilities

In-Space Facility Assembly Campaign (ISS, 1998-2011)

Electric propulsion results shown

Conclusions

- Prospects promising for smaller class systems using higher frequency full synodic cycle deliveries
- Could augment assembly & logistics; will explore future packaging and shipping options
- Transit time and trajectory optimization needed
- Methods of varying cadence/distribution of departures and arrivals should be investigated
- Size class roles/options need further investigation to maximize logistical deliveries by shipment size
- Need more data on support system functions and their logistics masses/rates required
- Investigation of different concepts for lunar and Mars vicinity waypoint operations—e.g., aggregated shipments
- Further investigation of affordability analysis warranted (i.e., from Earth-Surface to Mars surface)
- Commercial/economic potential—service sector implications of packaged cargo delivery rather than monolithic designs (i.e., cost of service to one player is the revenue to another)
- Package deliveries to Mars—small and large—may be enabling to support ambitious plans