461 research outputs found

    Emerson And The Vision Of The Child

    Get PDF
    This work argues for a reading of Ralph Waldo Emerson that takes into account his childhood and early upbringing, and thereby reads his mature philosophical works as reactionary enabling mythologies that were forged by his troubled childhood

    A Review of Pennsylvania\u27s Child Abuse Reporting Law

    Get PDF

    Risk Factors for Long-Term Coronary Artery Calcium Progression in the Multi-Ethnic Study of Atherosclerosis.

    Get PDF
    BackgroundCoronary artery calcium (CAC) detected by noncontrast cardiac computed tomography scanning is a measure of coronary atherosclerosis burden. Increasing CAC levels have been strongly associated with increased coronary events. Prior studies of cardiovascular disease risk factors and CAC progression have been limited by short follow-up or restricted to patients with advanced disease.Methods and resultsWe examined cardiovascular disease risk factors and CAC progression in a prospective multiethnic cohort study. CAC was measured 1 to 4 times (mean 2.5 scans) over 10 years in 6810 adults without preexisting cardiovascular disease. Mean CAC progression was 23.9 Agatston units/year. An innovative application of mixed-effects models investigated associations between cardiovascular disease risk factors and CAC progression. This approach adjusted for time-varying factors, was flexible with respect to follow-up time and number of observations per participant, and allowed simultaneous control of factors associated with both baseline CAC and CAC progression. Models included age, sex, study site, scanner type, and race/ethnicity. Associations were observed between CAC progression and age (14.2 Agatston units/year per 10 years [95% CI 13.0 to 15.5]), male sex (17.8 Agatston units/year [95% CI 15.3 to 20.3]), hypertension (13.8 Agatston units/year [95% CI 11.2 to 16.5]), diabetes (31.3 Agatston units/year [95% CI 27.4 to 35.3]), and other factors.ConclusionsCAC progression analyzed over 10 years of follow-up, with a novel analytical approach, demonstrated strong relationships with risk factors for incident cardiovascular events. Longitudinal CAC progression analyzed in this framework can be used to evaluate novel cardiovascular risk factors

    Is it the shape of the cavity, or the shape of the water in the cavity?

    Get PDF
    Historical interpretations of the thermodynamics characterizing biomolecular recognition have marginalized the role of water. An important (even, perhaps, dominant) contribution to molecular recognition in water comes from the “hydrophobic effect,” in which non-polar portions of a ligand interact preferentially with non-polar regions of a protein. Water surrounds the ligand, and water fills the binding pocket of the protein: when the protein-ligand complex forms, and hydrophobic surfaces of the binding pocket and the ligand approach one another, the molecules (and hydrogen-bonded networks of molecules) of water associated with both surfaces rearrange and, in part, entirely escape into the bulk solution. It is now clear that neither of the two most commonly cited rationalizations for the hydrophobic effect—an entropy-dominated hydrophobic effect, in which ordered waters at the surface of the ligand, and water at the surface of the protein, are released to the bulk upon binding, and a “lock-and-key” model, in which the surface of a ligand interacts directly with a surface of a protein having a complementary shape–can account for water-mediated interactions between the ligand and the protein, and neither is sufficient to account for the experimental observation of both entropy- andenthalpy-dominated hydrophobic effects. What is now clear is that there is no single hydrophobic effect, with a universally applicable, common, thermodynamic description: different processes (i.e., partitioning between phases of different hydrophobicity, aggregation in water, and binding) with different thermodynamics, depend on the molecular-level details of the structures of the molecules involved, and of the aggregates that form. A “water-centric” description of the hydrophobic effect in biomolecular recognition focuses on the structures of water surrounding the ligand, and of water filling the binding pocket of the protein, both before and after binding. This view attributes the hydrophobic effect to changes in the free energy of the networks of hydrogen bonds that are formed, broken, or re-arranged when two hydrophobic surfaces approach (but do not necessarily contact) one another. The details of the molecular topography (and the polar character) of the mole- cular surfaces play an important role in determining the structure of these networks of hydrogen-bonded waters, and in the thermodynamic description of the hydrophobic effect(s). Theorists have led the formulation of this “water-centric view”, although experiments are now supplying support for it. It poses complex problems for would-be “designers” of protein-ligand interactions, and for so-called “rational drug design”.Chemistry and Chemical Biolog

    Arm-length stabilisation for interferometric gravitational-wave detectors using frequency-doubled auxiliary lasers

    Get PDF
    Residual motion of the arm cavity mirrors is expected to prove one of the principal impediments to systematic lock acquisition in advanced gravitational-wave interferometers. We present a technique which overcomes this problem by employing auxiliary lasers at twice the fundamental measurement frequency to pre-stabilise the arm cavities' lengths. Applying this approach, we reduce the apparent length noise of a 1.3 m long, independently suspended Fabry-Perot cavity to 30 pm rms and successfully transfer longitudinal control of the system from the auxiliary laser to the measurement laser
    • …
    corecore