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Concepts, Control, and Context: A Connectionist Account of Normal and
Disordered Semantic Cognition

Paul Hoffman
University of Manchester and University of Edinburgh

James L. McClelland
Stanford University

Matthew A. Lambon Ralph
University of Manchester

Semantic cognition requires conceptual representations shaped by verbal and nonverbal experience
and executive control processes that regulate activation of knowledge to meet current situational
demands. A complete model must also account for the representation of concrete and abstract words,
of taxonomic and associative relationships, and for the role of context in shaping meaning. We
present the first major attempt to assimilate all of these elements within a unified, implemented
computational framework. Our model combines a hub-and-spoke architecture with a buffer that
allows its state to be influenced by prior context. This hybrid structure integrates the view, from
cognitive neuroscience, that concepts are grounded in sensory-motor representation with the view,
from computational linguistics, that knowledge is shaped by patterns of lexical co-occurrence. The
model successfully codes knowledge for abstract and concrete words, associative and taxonomic
relationships, and the multiple meanings of homonyms, within a single representational space.
Knowledge of abstract words is acquired through (a) their patterns of co-occurrence with other
words and (b) acquired embodiment, whereby they become indirectly associated with the perceptual
features of co-occurring concrete words. The model accounts for executive influences on semantics
by including a controlled retrieval mechanism that provides top-down input to amplify weak
semantic relationships. The representational and control elements of the model can be damaged
independently, and the consequences of such damage closely replicate effects seen in neuropsycho-
logical patients with loss of semantic representation versus control processes. Thus, the model
provides a wide-ranging and neurally plausible account of normal and impaired semantic cognition.

Keywords: semantic diversity, imageability, parallel distributed processing, semantic dementia, semantic
aphasia

Our interactions with the world are suffused with meaning. Each
of us has acquired a vast collection of semantic knowledge—
including the meanings of words and the properties of objects—
which is constantly called upon as we interpret sensory inputs and
plan speech and action. In addition to storing such conceptual

information in a readily accessible form, we must call upon dif-
ferent aspects of knowledge to guide behavior under different
circumstances. The knowledge that books are heavy, for example,
is irrelevant to most of our interactions with them but becomes
important when one is arranging a delivery to a library. These
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twin, intertwined abilities—the representation of acquired knowl-
edge about the world and the controlled, task-oriented use of this
knowledge—we refer to as semantic cognition.

The representation of semantic knowledge has long been the
target of statistical and computational modeling approaches. One
popular perspective, prevalent in cognitive neuroscience, holds
that representations of object concepts arise from associations
between their key verbal and nonverbal properties (Barsalou,
1999; Damasio, 1989; Martin, 2016; Patterson, Nestor, & Rogers,
2007; Pulvermuller, 2001; Simmons & Barsalou, 2003; Tyler &
Moss, 2001). Another, rooted in computational linguistics, holds
that semantic representation develops through sensitivity to the
distributional properties of word usage in language (Andrews,
Vigliocco, & Vinson, 2009; Firth, 1957; Griffiths, Steyvers, &
Tenenbaum, 2007; Jones & Mewhort, 2007; Landauer & Dumais,
1997; Lund & Burgess, 1996; Rohde, Gonnerman, & Plaut, 2006).
To date, these two approaches have made limited contact with one
another. However, as we will demonstrate in the present work,
these approaches are mutually compatible and considerable theo-
retical leverage can be gained by combining them. The second
element of semantic cognition—its flexible and controlled use—
has been investigated extensively in functional neuroimaging,
transcranial magnetic stimulation and neuropsychological studies
(Badre & Wagner, 2002; Gold et al., 2006; Jefferies, 2013; Jef-
feries & Lambon Ralph, 2006; Robinson, Shallice, Bozzali, &
Cipolotti, 2010; Thompson-Schill, D’Esposito, Aguirre, & Farah,
1997) but has rarely been incorporated formally into computa-
tional models.

In this article, we present an implemented computational
model that synthesizes the two distinct approaches to semantic
representation and, furthermore, we propose a mechanism by
which control processes interact with the knowledge store. Our
primary tests of this model were its ability: (a) to generate a
unified account of semantic representation and control spanning
concrete and abstract items; and (b) to account for the contras-
tive impairments observed in two neuropsychological syn-
dromes, semantic dementia and semantic aphasia, which have
been attributed to representational and control damage, respec-
tively (Jefferies & Lambon Ralph, 2006; Rogers, Patterson,
Jefferies, & Lambon Ralph, 2015). The main strengths of our
model are (a) its ability to represent a range of semantic
information, including the meanings of abstract as well as
concrete words, in a perceptually embodied and context-
sensitive format, and (b) its ability to regulate activation of this
knowledge in a way that meets changing task demands.

The article is structured as follows. We begin by considering the
key challenges in knowledge representation that motivated this
work. We describe the architecture of the model and illustrate how
it meets these challenges. We then move on to consider the
important but neglected issue of semantic control and describe
how we have implemented a controlled retrieval process, which
interacts with the knowledge store to direct semantic processing in
a task-appropriate fashion. With these representational and control
elements in place, we next present three simulations of perfor-
mance on semantic tasks. We demonstrate that damage to the
model’s representations and control processes induces divergent
patterns of performance that closely replicate those of patients with
hypothesized deficits in these abilities. We conclude by consider-

ing implications for theories of the neural basis of semantic cog-
nition and by noting some challenges for future work.

Part 1: Representation of Semantic Knowledge

In cognitive neuroscience, there is widespread agreement that
verbal, sensory, and motor experience, and the brain regions that
represent such information, play an integral role in conceptual
representation (Allport, 1985; Barsalou, 2008; Binder & Desai,
2011; Kiefer & Pulvermuller, 2012; Martin, 2016; Paivio, 1986;
Lambon Ralph, Jefferies, Patterson, & Rogers, 2017). This em-
bodied semantics position is supported by functional neuroimaging
studies indicating that particular sensory and motor processing
regions are activated when people process concepts which are
linked to them (Chao, Haxby, & Martin, 1999; Goldberg, Perfetti,
& Schneider, 2006; Kellenbach, Brett, & Patterson, 2001; Martin,
Haxby, Lalonde, Wiggs, & Ungerleider, 1995; Thompson-Schill,
Aguirre, D’Esposito, & Farah, 1999) and by neuropsychological
and neurostimulation studies that link impairments in sensory-
motor (S-M) processing with deficits for particular classes of
semantic knowledge (Campanella, D’Agostini, Skrap, & Shallice,
2010; Farah & McClelland, 1991; Pobric, Jefferies, & Lambon
Ralph, 2010; Warrington & Shallice, 1984). For example, damage
to frontoparietal regions involved in representing actions dispro-
portionately affects the semantic representations of tools and other
manipulable objects (Buxbaum & Saffran, 2002). The degree of
embodiment varies across theories (Meteyard, Cuadrado, Bahrami,
& Vigliocco, 2012), with the most strongly embodied approaches
proposing little distinction between the processes involved in
direct S-M experience and those involved in representing knowl-
edge acquired from such experiences (e.g., Gallese & Lakoff,
2005). Other theories hold that activation of S-M information is
necessary but not sufficient for semantic representation, and that
an additional, transmodal layer of representation is also needed
(Binder, 2016; Blouw, Solodkin, Thagard, & Eliasmith, 2015;
Damasio, 1989; Mahon & Caramazza, 2008; Patterson et al., 2007;
Simmons & Barsalou, 2003). This rerepresentation is thought to be
necessary because the mapping between the observable properties
of objects and their conceptual significance is complex and non-
linear. As such, the development of coherent, generalizable con-
ceptual knowledge requires integration of information from mul-
tiple modalities through a shared transmodal hub (Lambon Ralph,
Sage, Jones, & Mayberry, 2010).

Rogers et al. (2004) provided a demonstration of the importance
of transmodal representation, in an implemented neural network
model known as the hub-and-spoke model, which is the starting
point for the present work. The model consisted of several sets of
“spoke” units representing sensory and verbal elements of expe-
rience. There were also a set of hidden units (the hub) which did
not receive external inputs but instead mediated between the
various spokes. The model’s environment consisted of names,
verbal descriptions, and visual properties for 48 different objects.
When presented with a particular input (e.g., the name dog), it was
trained to activate other forms of information associated with that
concept (its visual characteristics and verbal description) by prop-
agating activation through the hub. During training, a learning
algorithm applied slow, incremental changes to the connections
between units, such that over time the network came to activate the
correct information for all of the stimuli. In so doing, it developed
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distributed patterns of activity over the hub units that represented
each of the 48 concepts. The similarity structure among these
representations captured the underlying, multimodal semantic
structure present in the training set.

To test the model further, Rogers et al. (2004) progressively
removed the hub unit connections, which resulted in increasingly
impaired ability to activate the appropriate information for each
concept. These impairments closely mimicked the deficits ob-
served in patients with semantic dementia (SD). SD is a form of
frontotemporal dementia in atrophy centered on the anterior tem-
poral lobes accompanies a selective erosion of all semantic
knowledge—verbal and nonverbal (Hodges & Patterson, 2007;
Hodges, Patterson, Oxbury, & Funnell, 1992; Snowden, Goulding,
& Neary, 1989). SD patients exhibit deficits across a wide range of
tasks that require semantic knowledge, including naming pictures,
understanding words, using objects correctly, and identifying ob-
jects from their tastes and smells (Bozeat, Lambon Ralph, Patter-
son, Garrard, & Hodges, 2000; Hodges, Bozeat, Lambon Ralph,
Patterson, & Spatt, 2000; Luzzi et al., 2007; Piwnica-Worms,
Omar, Hailstone, & Warren, 2010). Deficits in SD have long been
considered to result from damage to a central store of semantic
representations (Warrington, 1975). Damage to the hub component
of the Rogers et al. (2004) model produced the same pattern of
multimodal impairment.

The close correspondence between the deficits of SD patients
and the performance of the damaged hub-and-spoke model suggest
that damage to the transmodal “hub” is the root cause of these
patients’ deficits. Indeed, the pervasive semantic deficits in SD
have been linked with damage to, and hypometabolism of, one
particular area of the cortex: the ventrolateral anterior temporal
lobe (Butler, Brambati, Miller, & Gorno-Tempini, 2009; Mion et
al., 2010). Investigations using functional neuroimaging, transcra-
nial magnetic stimulation and intracranial recordings have all
confirmed that this region is selectively involved in many forms of
verbal and nonverbal semantic processing, as one would expect of
a transmodal semantic hub (Humphreys, Hoffman, Visser, Binney,
& Lambon Ralph, 2015; Marinkovic et al., 2003; Pobric, Jefferies,
& Lambon Ralph, 2007; Shimotake et al., 2015; Visser, Jefferies,
Embleton, & Lambon Ralph, 2012).

The hub-and-spoke model, with its commitment to the embod-
ied view that S-M experience plays an important role in shaping
semantic representation, provides a parsimonious account of a
range of phenomena in normal and impaired semantic processing
(Dilkina, McClelland, & Plaut, 2008; Patterson et al., 2007; Lam-
bon Ralph et al., 2017; Rogers et al., 2004; Rogers & McClelland,
2004; Schapiro, McClelland, Welbourne, Rogers, & Lambon
Ralph, 2013). Its core principle, that semantic knowledge requires
interaction between modality-specific and supramodal levels of
representation, is also integral to a number of other theories of
semantic cognition (Allport, 1985; Binder & Desai, 2011; Dama-
sio, 1989; Simmons & Barsalou, 2003) and has been employed in
other connectionist models (Blouw et al., 2015; Garagnani &
Pulvermüller, 2016; Plaut, 2002). There are, however, some crit-
ical and challenging aspects of semantic representation which have
not been accommodated by these theories, and which we address
in this work. First, the representation of abstract concepts is a
significant challenge to embodied semantic theories (Binder &
Desai, 2011; Leshinskaya & Caramazza, 2016; Meteyard et al.,
2012; Shallice & Cooper, 2013). Because abstract words are not

strongly linked with S-M experiences, it is unclear how a semantic
system based on such experience would represent these concepts.
A number of alternative accounts of abstract word knowledge have
been put forward, which are not mutually exclusive. First, it is
likely that some information about abstract words can be gleaned
from the statistics of their use in natural language, an important
mechanism that is central to our model and which we will consider
in more detail shortly. Second, abstract words often refer to aspects
of a person’s internal experiences, such as their emotions or
cognitive states (Kousta, Vigliocco, Vinson, Andrews, & Del
Campo, 2011; Vigliocco et al., 2014), and it is likely that these
internally generated sensations make an important contribution to
the representations of some abstract words. These influences were
not a specific target of our model, though they are compatible with
the approach we take. Finally, it has been suggested that, although
abstract words do not represent S-M experiences directly, some
abstract words might become grounded in this information through
linkage with concrete situations with which they are associated
(Barsalou, 1999; Pulvermüller, 2013). For example, the abstract
word direction might become associated with S-M information
related to pointing or to steering a car. However, it remains unclear
exactly how abstract words might become associated with S-M
experiences. In this study, we make an important advance on this
issue by demonstrating how a neural network can learn to associate
abstract words with S-M information indirectly, even if its training
environment does not include such associations in any direct form.

The representation of associative relationships between items
also represents a challenge to embodied semantic models that
represent semantic structure in terms of similarity in S-M proper-
ties. Such models are highly sensitive to category-based taxonomic
structure, because objects from the same taxonomic category (e.g.,
birds) typically share many S-M characteristics (e.g., have feath-
ers, able to fly; Cree & McRae, 2003; Dilkina & Lambon Ralph,
2012; Garrard, Lambon Ralph, Hodges, & Patterson, 2001). In
hub-and-spoke models, for example, as the units in the hub layer
learn to mediate between different S-M systems, so objects with
similar properties come to be represented by similar patterns of
activation (Rogers et al., 2004). However, semantic processing is
also strongly influenced by associative relationships between items
that are encountered in similar contexts but may have very differ-
ent properties (e.g., knife and butter; Alario, Segui, & Ferrand,
2000; Lin & Murphy, 2001; Perea & Gotor, 1997; Seidenberg,
Waters, Sanders, & Langer, 1984). To represent these relation-
ships, the semantic system must be sensitive to patterns of spatio-
temporal co-occurrence among words and objects.

For this reason, some researchers have suggested that taxonomic
and associative relations are represented in two distinct systems,
rather than a single semantic hub (Binder & Desai, 2011; Mirman
& Graziano, 2012; Schwartz et al., 2011). On this view, only the
extraction of taxonomic, category-based semantic structure is
served by the anterior temporal cortex (ATL). A separate system,
linked with ventral parietal cortex (VPC), processes information
about actions and temporally extended events and is therefore
sensitive to associations between items. An alternative perspective,
adopted in the present work, is that both types of relationship are
represented within a single semantic space (Jackson, Hoffman,
Pobric, & Lambon Ralph, 2015). To do so, the hub must be
simultaneously sensitive to similarities in S-M properties and to
temporal co-occurrence. As we shall go on to explain in more
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detail, this can be achieved by training the model to predict
upcoming words on the basis of context, in addition to learning the
S-M patterns associated with words. Previous computational work
by Plaut and colleagues demonstrated that a single semantic sys-
tem can simulate semantic priming effects for both taxonomic and
associative relationships, through sensitivity to item co-occurrence
as well as S-M similarity (Plaut, 1995; Plaut & Booth, 2000). That
work focused on understanding the timing of access to semantic
representations under different conditions. Our focus in the present
work is on the structure of the learned semantic representations;
we investigate whether the hub-and-spoke architecture develops
sensitivity to both types of relationship within a single hub layer.

The final phenomenon we consider is that of context-sensitivity
in the processing of meaning. Some words, termed homonyms,
take on entirely different meanings when used in different situa-
tions (e.g., bark). Many more words are polysemous: Their mean-
ing changes in a more subtle and graded fashion across the various
contexts in which they appear (consider the change in the meaning
of life in the two phrases “the mother gave him life” and “the judge
gave him life”). While a number of implemented computational
models have explored consequences of this ambiguity for lexical
processing (Armstrong & Plaut, 2008; Hoffman & Woollams,
2015; Kawamoto, 1993; Rodd, Gaskell, & Marslen-Wilson, 2004),
few have considered how context-dependent variation in meaning
is acquired or how a contextually appropriate interpretation of a
word is activated in any given instance. In order to address such
issues, a model must have some mechanism for representing the
context in which a particular stimulus is processed. Previous
hub-and-spoke models were not developed with this in mind and
thus has no such mechanism. Another class of connectionist mod-
els have, however, made progress on these issues. Simple recurrent
networks process stimuli sequentially and include a buffering
function, which allows the network to store the pattern of activity
elicited by one input and use this to influence how the next input
in the sequence is processed (Elman, 1990). In so doing, simple
recurrent networks become highly sensitive to statistical regulari-
ties present in temporal streams of information, such as those
found in artificial grammars or in sequences of letters taken from
English sentences, and can make accurate predictions about up-
coming items (Cleeremans, Servan-Schreiber, & McClelland,
1989; Elman, 1990). St. John and McClelland (1990) used a simple
recurrent network to represent the meanings of sentences that were
presented to the network as a series of individual constituents.
Upon processing each constituent, the model was trained to make
predictions about the content of the sentence as a whole. Following
training, the same word could elicit radically different patterns of
activity depending on the particular sentence in which it appeared.
This model demonstrated that a simple recurrent network could ac-
quire context-sensitive representations of the meanings of words. The
potential value of recurrent networks in developing context-sensitive
semantic representations has also been noted by other researchers
(Yee & Thompson-Schill, 2016). In the present work, we harness this
powerful computational mechanism by integrating it within a hub-
and-spoke framework.

To summarize, a number of embodied semantic models hold
that concepts are acquired as the semantic system learns to link
various verbal and S-M elements of experience through an addi-
tional transmodal level of representation. This model is compatible
with a range of empirical data but there are three key theoretical

issues that remain unresolved. How does such a framework rep-
resent the meanings of abstract words? How does it represent
associative relations between concepts? And what mechanisms
would be necessary to allow its representations to vary depending
on the context in which they occur? In tackling these questions, we
took inspiration from a different tradition in semantic representa-
tion that provides a useful alternative perspective. The distribu-
tional semantics approach developed in computational linguistics
and holds that patterns of lexical co-occurrence in natural language
are key determinants of word meanings. Firth (1957) summarized
this principle with the phrase “You shall know a word by the
company it keeps.” Words that are frequently used in the same or
similar contexts are assumed to have related meanings. Modern
computing power has allowed this theory to be applied to large
corpora of real-world language, with considerable success (Grif-
fiths et al., 2007; Jones & Mewhort, 2007; Landauer & Dumais,
1997; Lund & Burgess, 1996). These statistical models represent
words as high-dimensional semantic vectors, in which similarity
between the vectors of words is governed by similarity in the
contexts in which they are used. Similarity in contextual usage is
assumed to indicate similarity in meaning. Representations derived
in this way have been shown to be useful in predicting human
performance across a range of verbal semantic tasks (Bullinaria &
Levy, 2007; Jones & Mewhort, 2007; Landauer & Dumais, 1997).

The distributional semantics approach is well-suited to address-
ing the challenges in semantic representation we have already
identified. Because it is based on linguistic and not S-M experi-
ences, it is possible to code abstract words in exactly the same way
as for concrete words. Because its representations are based on
contextual co-occurrence, it is highly sensitive to associative rela-
tionships between concepts, irrespective of whether they share
S-M properties (Hoffman, 2016). Finally, because its central tenet
is that meaning is determined by context, it naturally allows for
variation in meaning when the same words are used in different
contexts (Kintsch, 2001; Landauer, 2001).

The distributional approach has come under heavy criticism
because, unlike embodied approaches to semantics, it makes no
connection with S-M experiences (Barsalou, 1999; Glenberg &
Robertson, 2000). Because the representation of each word is
determined solely by its relationships with other words, the system
as a whole lacks grounding in the external world. The distribu-
tional account would thus seem to provide no insights into the
considerable neuroscientific evidence for S-M embodiment of
semantic knowledge. Recently, however, some promising efforts
have been made to modify distributional models so that they take
into account information about S-M properties as well as the
statistics of lexical co-occurrence (Andrews et al., 2009; Durda,
Buchanan, & Caron, 2009; Johns & Jones, 2012; Steyvers, 2010).
These have, for example, shown that S-M properties of concrete
words can be accurately inferred by analyzing their patterns of
lexical co-occurrence with other words whose S-M characteristics
are already known (Johns & Jones, 2012). In addition, a number of
researchers have advocated a hybrid view of semantic representation
in which embodied and distributional aspects both play a role (Bar-
salou, Santos, Simmons, & Wilson, 2008; Dove, 2011; Louwerse &
Jeuniaux, 2008; Vigliocco, Meteyard, Andrews, & Kousta, 2009). We
took a similar position in developing our model.

In the present study, one of our key goals was to develop a
connectionist model that combined the distributional approach
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with the principle of embodiment in S-M experience. Critically,
we implemented this synthesis within the hub-and-spoke concep-
tual framework, which has proved successful in addressing other
aspects of semantic representation. In so doing, we addressed
another, perhaps more basic limitation of the distributional ap-
proach, namely that it provides minimal insights into the mecha-
nisms underpinning acquisition of conceptual knowledge. We will
take the most well-known statistical model, latent semantic anal-
ysis (Landauer & Dumais, 1997), as an example. This technique
involves the construction of a large matrix of word occurrence
frequencies, aggregating data from a corpus of several million
words. When this matrix has been fully populated, it is subjected
to singular value decomposition in order to extract the latent
statistical structure thought to underpin semantic knowledge.
While the resulting representations appear to bear useful similar-
ities to human semantic knowledge, this process by which they are
derived bears little relation to the way in which conceptual knowl-
edge is acquired by humans. Children do not accumulate vast
reserves of data about which words they have heard in which
contexts, only to convert these data into semantic representations
once they have been exposed to several million words. In reality,
acquisition of conceptual knowledge is a slow, incremental pro-
cess, in which knowledge is constantly updated on the basis of new
experiences (McClelland, McNaughton, & O’Reilly, 1995). Some
researchers have addressed this concern, proposing distributional
models in which representations are gradually updated online as
linguistic information is processed (Jones & Mewhort, 2007; Rao
& Howard, 2008). Nevertheless, the distributional approach to
semantic knowledge has yet to be integrated with neurally inspired
embodied approaches to semantic cognition.

In this article, we present a model that simultaneously assimi-
lates the embodied and distributional approaches to semantic rep-
resentation. The basic tenet of the model is that semantic knowl-
edge is acquired as individuals learn to map between the various
forms of information, verbal and nonverbal, that are associated
with particular concepts (Patterson et al., 2007; Lambon Ralph et
al., 2017; Rogers et al., 2004; Rogers & McClelland, 2004). The
“hub” that mediates these interactions develops representations
that code the deeper, conceptual relationships between items. To
this framework, we have added the distributional principle, which
holds that sensitivity to context and to the co-occurrence of items
is an important additional source of semantic information. To
achieve this synthesis, we added two ingredients to the model. The
first was a training environment in which concepts are processed
sequentially and in which the co-occurrence of concepts in the
same sequence is indicative of a semantic relationship between
them. The second was a buffering function, inspired by work with
simple recurrent networks (Elman, 1990; St. John & McClelland,
1990), that allowed the model’s hub to be influenced by its own
previous state. To encourage the model to become sensitive to item
co-occurrences, upon processing each stimulus, it was trained to
predict the next item in the sequence. This is in tune with the
widely held view that prediction is an important mechanism in
language processing (Altmann & Kamide, 2007; Dell & Chang,
2013; Pickering & Garrod, 2007) and with recent interest in the use
of predictive neural networks to learn distributed representations
of word meaning (e.g., Mikolov, Chen, Corrado, & Dean, 2013).

The Model

Overview. The model is shown in Figure 1. Inputs are pre-
sented to the model sequentially. Inputs may be verbal, analogous
to hearing words, or they may be constellations of S-M properties,
analogous to interaction with objects in the environment. The
model learns to perform two tasks simultaneously in response to
these inputs. First, following the presentation of each stimulus, it
is required to make predictions about which word will appear next
in the sequence, taking into account recent context. Second, when
presented with a concrete word as a stimulus, it is also required to
activate the S-M properties of the word’s referent.

Architecture. The model is a fully recurrent neural network,
consisting of 590 units organized into five pools. Sixty-four verbal
input units represent the 64 words in the model’s vocabulary.
Activation of these units is controlled by external input from the
environment. In contrast, the 64 verbal prediction units never
receive external inputs, but are used to represent the model’s
predictions about the identity of the next word in the sequence.
There are 162 units representing S-M properties. These can either
activated externally, representing perception of an object in the
environment, or they can be activated by the model in the course
of processing a particular verbal input. This latter process can be
thought of as a mental simulation of the properties of an object
upon hearing its name.

The connections between the three layers are mediated by 150
hidden units, known collectively as the “hub.” Activation patterns
over the hub layer are not specified directly by the modeler and are
instead shaped by the learning process. As the hub is trained to
map between verbal inputs, verbal predictions and S-M properties,
it develops patterns of activation that reflect the statistics under-

Figure 1. Architecture of the representational model. Black layers com-
prise visible units that receive inputs and/or targets from the environment.
Gray layers represent hidden units. Solid arrows indicate full, trainable
connectivity between layers. The dashed arrow represents a copy function
whereby, following processing of a stimulus, the activation pattern over the
hub layer is replicated on the context layer where it remains to act as the
context for the next stimulus.
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lying these mappings. Words that are associated with similar
verbal predictions and/or similar S-M properties come to be rep-
resented by similar activation patterns in the hub.

Finally, at each step in the sequence, the 150 context units are
used to store a copy of the hub activations elicited by the previous
input (see Processing section for more detail). This information is
an additional source of constraint on the hub, allowing its process-
ing of each input to be influenced by the context in which it occurs.

Processing. The model is presented with sequences of stimuli
consisting of words and S-M properties, arranged in “episodes” of
five inputs. An example episode is shown in Figure 2. As we were
primarily concerned with comprehension of individual words, se-
quences have no syntactic structure and consist entirely of nouns. The
word sequences therefore do not represent sentences as such; instead,
they represent a series of concepts that one might encounter while
listening to a description of an event or a scene. At some points in the
sequence, a set of S-M properties representing a particular concrete
object is presented in lieu of a word. This reflects the fact that when
we are listening to a verbal statement, we often simultaneously ob-
serve objects in the environment that are relevant to the topic under
discussion. In the model, this concurrent experience of verbal and
nonverbal stimuli is implemented as a sequential process, with the
nonverbal perceptions interspersed within the verbal stream.

Each stimulus is processed for seven time steps, with unit
activations updated four times in each time step. To present the
model with a word, the corresponding verbal input unit is clamped
on for the full seven time steps and activation is allowed to
propagate through the rest of the network. No direct input is
provided to the prediction or S-M units; instead, their activity
develops as a consequence of the flow of activation through the
network in response to the word. At the end of this process, the
activation states of the prediction and S-M units can be read off as
the model’s outputs. Once fully trained, the model produces a
pattern of activation over its prediction units that represents its
expectation about the identity of the next word, given the word just
presented and the preceding context. Activation of S-M units
represents the S-M properties that the model has come to associate
with the presented word.

During the training phase, the model is presented with targets
that are used to influence learning. During the final two time steps

for each stimulus, it receives targets on the prediction layer and,
optionally, on the S-M layer. The prediction unit representing the
next word in the episode is given a target value of one (all other
prediction units have targets of zero). When the input is a concrete
word or homonym, the model is also given S-M targets corre-
sponding to the S-M properties of the word’s referent. If the input
is an abstract word, no S-M targets are provided and the model is
free to produce any pattern of activity over the S-M units. The
actual activation patterns over the prediction and S-M layers are
compared with their targets so that errors can be calculated and the
connection weights throughout the network adjusted by back-
propagation (see training and other model parameters). When
abstract words are presented, there are no targets on the S-M units.

When the model is presented with a S-M pattern as stimulus, the
process is similar. The S-M units are clamped for the full seven
time steps and the verbal input units are clamped at zero. Activa-
tion propagates through the network and targets are provided for
the prediction layer during the final two time steps. The prediction
target again represents the next word in the episode.

Following the processing of each stimulus, the activation values
of the hub units are copied over to the context units. The context
units are then clamped with this activation pattern for the duration
of the next stimulus. The context units provide an additional input
to the hub layer, allowing it to be influenced by its previous state.
This recurrent architecture allows the model to develop represen-
tations that are sensitive to context.

Model vocabulary. In common with other connectionist ap-
proaches to semantics, the model was trained in a simplified artificial
environment designed to capture the key features of semantic pro-
cessing that are relevant to our goals. The 64 concepts in the model’s
vocabulary comprise 22 concrete concepts, 32 abstract concepts, and
10 homonyms (see Figure 3). The concrete and abstract words were
used to investigate how knowledge for abstract concepts could be-
come embodied in S-M experience (see below and Simulation 2). The

  1 2 3 4 5 

INPUTS 
verbal car journey  distance cashier  

S-M     <TRUCK>  

TARGETS 
prediction journey cashier cashier distance

S-M <CAR>    cashier  <CASHIER>

TIME

Figure 2. An example episode. The 10 inputs for the episode are shown
from left to right, along with the targets provided at each point. For
example, at the first point in this sequence, the verbal input unit for car is
activated and the model is trained to turn on the S-M units associated with
cars and the prediction unit for journey (as this is the next item in the
sequence). �ITEM � represents the S-M properties of a concrete item.

Figure 3. The model’s vocabulary.
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concrete words were also used to explore the model’s ability to
represent taxonomic and associative semantic relationships (Simula-
tion 3). The homonyms, which we define as words that have two
meanings associated with distinct contexts, were used to investigate
the model’s sensitivity to context (Simulation 1).

S-M properties. The 162 S-M units represent the sensory and
motor properties of objects. Many studies have investigated how
the structure of S-M properties varies across different categories of
object (e.g., Cree & McRae, 2003; Garrard et al., 2001) and
insights from these studies have been incorporated into models that
seek to explain dissociations between particular categories (e.g.,
Farah & McClelland, 1991; Tyler, Moss, Durrant-Peatfield, &
Levy, 2000). Such effects were not germane in the present study so
we only implemented the most robust general finding in this
domain: that members of the same category tend to share more
S-M properties than items from different categories. Concrete
concepts were organized into six taxonomic categories (see Figure
3). Each item was associated with six properties that it shared with
its category neighbors and three that were unique to that item.
Abstract concepts were not assigned S-M properties, on the basis
that these concepts are not linked directly with specific S-M
experiences. In natural language, the meanings of homonyms can
be either concrete or abstract. In the model, we assumed for
simplicity that all homonyms had concrete meanings.1 We as-
signed two different sets of S-M properties to each homonym,
corresponding to each of its meanings. Each set consisted of six
properties shared with other concrete concepts and three properties
unique to that meaning.

Training corpus. Our construction of a training corpus for the
model was inspired by a particular class of distributional semantic
models known as topic models (Griffiths et al., 2007). These models
assume that samples of natural language can be usefully represented
in terms of underlying topics, where a topic is a probability distribu-
tion over a particular set of semantically related words. To generate a
training corpus for our model, we constructed 35 artificial topics. An
example topic is shown in Figure 4. Each topic consisted of a list of
between 10 and 19 concepts that might be expected to be used
together in a particular context. There was also a probability distri-
bution that governed their selection. The construction of topics was
guided by the following constraints:

1. Topics were composed of a mixture of concrete, abstract
and homonym concepts (although two topics, ELECTION
and REFERENDUM, featured only abstract concepts).

2. Abstract concepts were organized in pairs with related
meanings (see Figure 3). Word pairs with related meanings
frequently occurred in the same topics, in line with the
distributional principle. That is, words with related mean-
ings had similar (but not identical) probability distributions
across the 35 topics. For example, journey and distance
could co-occur in seven different topics, but with differing
probabilities, and there were an additional five topics in
which one member of the pair could occur but the other
could not.

3. Concrete concepts belonging to the same category fre-
quently occurred in the same topics, in line with distribu-
tional data from linguistic corpora (Hoffman, 2016) and

visual scenes (Sadeghi, McClelland, & Hoffman, 2015). In
addition, particular pairs of concrete concepts from different
categories co-occurred regularly in specific topics (e.g., deer
and hunter both appeared with high probability in the
HUNTING topic). This ensured that the corpus included
associative relationships between items that did not share
S-M properties.

4. Each homonym occurred in two disparate sets of topics. For
example, bank regularly occurred in the FINANCIAL topic,
representing its dominant usage, but also occasionally in the
RIVERSIDE topic, representing its subordinate meaning.2

Some additional constraints, required for Simulation 2, were
also included and are described as they become relevant.

The topics were used to generate episodes consisting of 5 stimuli.
To generate an episode, a topic was first chosen in a stochastic
fashion, weighted such that eight particular topics were selected five
or 10 times more often than the others. This weighting ensured that
some concepts occurred more frequently than others (necessary for
Simulation 2). Next, a concept was sampled from the probability
distribution for the chosen topic. If a concrete concept or homonym
was chosen, it was presented either verbally or as a S-M pattern (with
equal probability). For concrete words, the S-M pattern used was
always the same. For homonyms, the S-M pattern varied depending
on whether the word was being used in its dominant or subordinate
sense. Another concept was then sampled and the process continued
until a sequence of five stimuli had been generated. The same concept
could be sampled multiple times within an episode.

A total of 400,000 episodes were generated in this fashion; this
served as the training corpus for the model. The corpus was
presented as a continuous stream of inputs to the model, so there
was no indication of when one episode ended and the next began.
On the last stimulus for each episode, however, no prediction
target was given to the model.

Training and other model parameters. Simulations were
performed using the Light Efficient Network Simulator (Rohde,
1999). The network was initialized with random weights that varied
between �0.2 and 0.2. All units were assigned a fixed, untrainable
bias of �2, ensuring that they remained close to their minimum
activation level in the absence of other inputs. Activation of the hub
units and S-M units was calculated using a logistic function. Error on
the S-M units was computed using a cross-entropy function. As the
prediction units represented a probability distribution, their activation
was governed by a soft-max function which ensured that their com-
bined activity always summed to one. These units received a diver-
gence error function.

The model was trained with a learning rate of 0.1 and momentum
of 0.9, with the condition that the premomentum weight step vector
was bounded so that its length could not exceed one (known as
“Doug’s momentum”). Error derivatives were accumulated over stim-

1 This choice had no major effect on the results reported in this article:
Similar results were obtained in alternative model in which homonyms
were abstract.

2 In addition, as we describe in Simulation 2, all concepts were associ-
ated with some contextual variability, as they all occurred in at least three
different topics (M � 7.6; the most variable word, problem, occurred in 23
topics).
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uli and weight changes applied after every hundredth episode. Weight
decay of 10�6 was applied at every update. The model was trained for
a total of five passes through the corpus (equivalent to 20,000 weight
updates, two million episodes, or 10 million individual stimuli).

Ten models were trained in this way, each with a different set of
random starting weights. All the results we present are averaged
over the 10 models.

Results: Representational Properties of the Model
Context-sensitivity. Once trained, the model is able to take a

word as input and predict which other words it is likely to encounter
subsequently. Due to its recurrent architecture, these predictions are
shaped by the context in which the word is presented. To illustrate
this, we presented the word pump to the model immediately after one

of three other words. Two of these words, truck and shoe, represent
the two disparate types of context in which pump appeared during
training. The third, deposit represents a novel context. The left-hand
panel of Figure 5 shows activation of some of the network’s predic-
tion units in each context. The model demonstrates context-
sensitivity, appropriately biasing its predictions toward petrol-related
words in the first case and clothing-related words in the second. When
the word appears in a novel context, the model hedges its bets and
assigns intermediate probabilities to both types of word.

The model is able to shift its behavior in this way because the
learned representations over the hub layer are influenced by prior
context. This is illustrated in the right-hand panel of Figure 5, which
represents graphically the relationships between the network’s repre-
sentations of particular words in the three different contexts. We

Topic: PETROL STATION 

Topic frequency: 10 

Concept Probability 

car 0.19 

truck 0.18 

bus 0.11 

journey 0.11 

juice 0.08 

measurement 0.07 

pump 0.05 

problem 0.05 

footballer 0.04 

distance 0.03 

cashier 0.03 

hunter 0.02 

difficulty 0.01 

information 0.01 

direction 0.01 

production 0.01 

Topic: CLOTHES SHOP 

Topic frequency: 1

Concept Probability 

pump 0.23 

foot 0.20 

boot 0.15 

option 0.12 

gown 0.07 

shoe 0.06 

cashier 0.05 

jacket 0.04 

duchess 0.04 

quantity 0.02 

decision 0.02 

Figure 4. Example topic distributions. Concepts with S-M features are shown in italics. The PETROL
STATION topic was used to generate the episode shown in Figure 2.
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presented the network with various words, each time immediately
after one of the three context words, and recorded the pattern of
activity over the hub units. We performed multidimensional scaling
on these representations, so that each word could be plotted in a
two-dimensional space in which the proximities of words indicates
the degree of similarity in their hub representations. When presented
in the context of truck, the model’s representation of pump is similar
to that of journey, distance and other petrol-related words. Con-
versely, when pump is presented after shoe, the model generates an
internal representation that is similar to that of foot and other items of
clothing. In a novel context, the pump representation lies in the midst
of these two sets. In other words, by including context units that retain
the network’s previous states, the model has developed semantic
representations for words that take into account the context in which
they are being used. This context-dependence is a key feature of

models with similar recurrent architectures (Elman, 1990; St. John &
McClelland, 1990).

It is worth noting that these context-dependent shifts in represen-
tation are graded and not categorical. In other words, the model’s
representation of a word’s meaning varies continuously as a function
of the context in which it is being used. This graded variation in
representation is consistent with a proposition from the distributional
semantics approach, which holds that any two uses of the same word
are never truly identical in meaning. Instead, their precise connotation
depends on their immediate linguistic and environmental context
(Cruse, 1986; Landauer, 2001). This means that, in addition to hom-
onyms, the model is well-suited to the representation of polysemous
words, whose meanings change more subtly when they are used in
different contexts. We consider this aspect of the model in more detail
in Simulation 2, where we simulate the effects of semantic diversity

Figure 5. Context-sensitive representation of the word pump. The model was presented with pump immediately
following either truck, shoe, or deposit. Results are averaged over 50 such presentations. Left: Activation of prediction
units, indicating that the model’s expectations change when the word appears in these different contexts. Right:
Results of multidimensional scaling analyses performed on the hub representations of words presented in each context.
In these plots, the proximity of two words indicates the similarity of their representations over the hub units (where
similarity is measured by the correlation between their activation vectors). The model’s internal representation of
pump shifts as a function of context. See the online article for the color version of this figure.
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on comprehension (Hoffman, Lambon Ralph, & Rogers, 2013b;
Hoffman, Rogers, & Lambon Ralph, 2011b).

Representation of abstract words and taxonomic and asso-
ciative semantic structure. A key feature of the model is that all
concepts, concrete and abstract, are associated with characteristic
patterns of activity over the same hub units and are therefore
represented in a common semantic space. To explore the charac-
teristics of this space, we performed multidimensional scaling
on the hub’s representations of all concrete and abstract words.
In this case, we were interested in the general structure of the
semantic space, independent of any specific context. We there-
fore presented each word to the network 64 times, each time
preceded by a different word from the model’s vocabulary. To
obtain context-independent representations for each word, we
averaged the activation patterns elicited on the hub units over
these 64 presentations. The resulting activation patterns for all
words were used to compute a pairwise distance matrix between
words. The process was repeated 50 times and the averaged
distance matrix was used to generate the multidimensional
scaling plot shown in Figure 6.

The model acquires internal representations that allow it to
generate appropriate patterns of activity over the S-M and predic-
tion units. As a consequence, words that are associated with
similar S-M features come to be associated with similar hub
representations, as do those that elicit similar predictions about
upcoming words. Several consequences of this behavior are evi-
dent in Figure 6.

1. Taxonomic structure emerges as an important organiza-
tional principle for concrete words. There are two reasons
why the model learns this representational structure.
First, concrete items from the same category share a
number of S-M features. Second, items from the same
category regularly occur in the same contexts and are
therefore associated with similar predictions about which
words are likely to appear next.

2. Abstract words that occur in similar contexts have similar
representations. The corpus was designed such that par-
ticular pairs of abstract words frequently co-occurred (see
Figure 2). In Figure 6, it is clear that these pairs are
typically close to one another in the network’s learned
semantic space. When the model is presented with ab-
stract words, it is only required to generate predictions;
therefore, the representation of abstract words is gov-
erned by the distributional principle. Words that fre-
quently occur in the same contexts come to have similar
semantic representations because they generate similar
predictions.

3. The units in the hub make no strong distinction between
concrete and abstract words. Concrete and abstract words
can be represented as similar to one another if they occur in
similar contexts (e.g., journey and distance and the vehi-
cles). Of course, concrete and abstract words are more

Figure 6. Hub representations of concrete and abstract concepts. Concrete concepts are color-coded by
category. Abstract concepts are shown in greyscale, where shading indicates pairs of semantically related words.
See the online article for the color version of this figure.
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strongly distinguished in the S-M units, where only concrete
words elicit strong patterns of activity (though abstract
words come to generate some weaker activity here too; see
below).

4. Associative relationships between concrete items are also
represented. Although taxonomic category appears to be the
primary organizing factor for concrete concepts, the struc-
ture of these items also reflects conceptual co-occurrence.
For example, the fruits, plants, and animals are all close to
one another because they regularly co-occur in contexts
relating to the outdoors/countryside (in addition, some of the
animals and fruits co-occur in cooking contexts).

To investigate the degree to which the model acquired associa-
tive as well as taxonomic relationships, we performed further
analyses on pairwise similarities between the hub representations
of the concrete items. The mean similarity between item pairs from
the same category was 0.44 (SD � .061) while for between-
category pairs it was 0.01 (SD � .056; t(229) � 40.5, p � .001).
This confirms our assertion that items from the same category have
much more similar representations than those from different cat-
egories. To investigate the effect of associative strength on repre-
sentational similarity, we considered the between-category pairs in
more detail. We defined the associative strength A between two
words x and y as follows:

A � 1
2�Nxy

Nx
�

Nyx

Ny
�

Where Nxy indicates the number of occasions x was immediately
followed by y in the training corpus, Nyx is the number of times y
was followed by x and Nx and Ny represent the total number of
occurrences of x and y, respectively. There was a significant
positive correlation between the associative strength of two items
and the similarity of their hub representations, �(199) � 0.39, p �
.001. In other words, the more frequently two items occur together
during training, the more likely the model is to represent them with
similar patterns in the hub. The average similarity for strongly
associated between-category pairs (defined with an arbitrary
threshold of A � 0.07) was 0.10 (SD � .08).

Acquired embodiment of abstract concepts. As discussed
earlier, the representation of abstract concepts is a contentious
issue. Some researchers have suggested that knowledge of abstract
words is derived solely through their use in language. Others have
argued that abstract concepts must be grounded in perceptual
experience (e.g., Barsalou, 1999) but it is not clear how such
grounding would take place. When being trained to process ab-
stract words, our model only receives verbal distributional infor-
mation; it is not trained to associate abstract words with S-M
experiences. However, abstract words come to be linked to S-M
information by virtue of their associations with concrete words—a
process we refer to as “acquired embodiment.” Figure 7A provides
some examples of this. We have plotted activations for the S-M
features shared by all members of a category when the network is
presented with some representative concrete and abstract words.
For concrete words, the network is trained to activate the S-M
features of the item whenever it is encountered. Each of the
concrete words therefore elicits a clear, binary pattern of S-M
activation. For abstract words, the S-M units do not receive any

targets during training, in line with the idea that abstract concepts
are not directly associated with S-M experiences. The activity of
these units is entirely unconstrained by the learning process. As
seen in Figure 7A, however, when presented with abstract words,
the network comes to partially activate the S-M features of the
concrete items with which they regularly co-occur. For example,
journey elicits partial activation of the S-M features of vehicles
and company partially activates the features of humans.

This acquired embodiment is an emergent consequence of the
requirement for the model to represent the statistics of conceptual
co-occurrence and S-M experience in a single system. As we saw
earlier, the model represents concrete and abstract words in a
single semantic space and both can elicit similar patterns of activ-
ity on the hub layer if they are associated with similar verbal
predictions. For example, journey has a similar representation to
bus because both words are found in contexts in which words like
car, distance, and pump are likely to occur. Because the activity of
the S-M units is determined by the inputs they receive from the
hub units, words with similar hub representations generate similar
patterns of S-M activity. So journey comes to partially activate
vehicular S-M features as a by-product of its regular co-occurrence
with vehicle names.

A number of alternative modeling approaches have also merged
S-M information with distributional statistics from natural lan-
guage (Andrews et al., 2009; Durda et al., 2009; Steyvers, 2010)
and have shown how S-M knowledge linked with a particular word
can be indirectly extended to its lexical associates (Johns & Jones,
2012). One important way in which our model differs from these
other approaches is that, in our model, the embodiment of abstract
words is context-dependent. This is illustrated in Figure 7B, which
shows the different S-M activations elicited by the same abstract
words in two different contexts. When journey occurs immediately
after cashier, vehicle S-M units are strongly activated because
journey and cashier regularly co-occur in contexts in which modes
of transport are discussed. In contrast, journey presented after
duchess elicits only weak activation because in the topics in
which these two words co-occur, vehicles are rarely. Thus, the
type of S-M information activated by abstract words depends on
the particular context in which they appear, which is consistent
with data showing that context affects the types of S-M knowl-
edge participants retrieve in response to words (Wu & Barsalou,
2009).

Summary

In this section, we have described how our model acquires
semantic representations under the simultaneous pressure to
predict upcoming words based on preceding context (thus learn-
ing the distributional properties of the language) and to asso-
ciate concrete words with S-M experiences (thus embodying
conceptual knowledge in the physical world). Importantly, both
of these challenges are met by a single set of “hub” units, whose
activation patterns come to represent the underlying semantic
structure of the concepts processed by the model. We have
demonstrated that this architecture has a number of desirable
characteristics. The recurrent architecture allows the network’s
predictions about upcoming words to be influenced by prior
context. As a consequence, the model’s internal representations
of specific concepts also vary with context. This is an important
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property, because most words are associated with context-
dependent variation in meaning (Cruse, 1986; Klein & Murphy,
2001; Rodd, Gaskell, & Marslen-Wilson, 2002). Second, the
model represents concrete and abstract words in a single rep-
resentational space, and is sensitive to associative semantic
relationships as well as those based on similarity in S-M fea-
tures. This is consistent with neuroimaging and neuropsycho-
logical evidence indicating that all of these aspects of semantic
knowledge are supported by the transmodal “hub” cortex of the
ventral anterior temporal lobes (Hoffman, Binney, & Lambon
Ralph, 2015; Hoffman, Jones, & Lambon Ralph, 2013a; Jack-
son et al., 2015; Jefferies, Patterson, Jones, & Lambon Ralph,
2009). Finally, the model provides an explicit account of how
abstract words can become indirectly associated with S-M
information by virtue of their co-occurrence with concrete
words. This process of acquired embodiment demonstrates how
representations of abstract words based on the distributional
principle can become grounded in the physical world.

At the outset of this article, we stated that a comprehensive
theory of semantic cognition requires not only an account of how
semantic knowledge is represented but also how it is harnessed to
generate task-appropriate behavior. In the next section, we turn our
attention to this second major challenge: The need for control
processes that regulate how semantic information is activated to
complete specific tasks.

Part 2: Executive Regulation of Semantic Knowledge

The semantic system holds a great deal of information about
any particular concept and different aspects of this knowledge
are relevant in different situations. Effective use of semantic
knowledge therefore requires that activation of semantic knowl-
edge is shaped and regulated such that the most useful repre-
sentation for the current situation comes to mind. An oft-quoted
example is the knowledge required to perform different tasks
with a piano (Saffran, 2000). When playing a piano, the func-
tions of the key and pedals are highly relevant and must be
activated in order to guide behavior. However, when moving a
piano, this information is no longer relevant and, instead, be-
havior should be guided by the knowledge that pianos are
heavy, expensive and often have wheels. The meanings of
homonyms are another case that is germane to the present work.
When a homonym is processed, its distinct meanings initially
compete with one another for activation and this competition is
thought to be resolved by top-down executive control pro-
cesses, particularly when context does not provide a good guide
to the appropriate interpretation (Noonan, Jefferies, Corbett, &
Lambon Ralph, 2010; Rodd, Davis, & Johnsrude, 2005;
Zempleni, Renken, Hoeks, Hoogduin, & Stowe, 2007).

These top-down regulatory influences are often referred to as
semantic control (Badre & Wagner, 2002; Jefferies & Lambon Ralph,

Figure 7. S-M unit activations for a selection of concrete and abstract words. (A) Activations of S-M units
shared by the members of each category, in response to a selection of words. Each word was presented to the
network 50 times (with a different random pattern of activity on the context units) and the results averaged to
generate this figure. (B) Activation of S-M units in response to the same abstract word in two different contexts.
See the online article for the color version of this figure.
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2006) and are associated with activity in a neural network including
left inferior frontal gyrus, inferior parietal sulcus and posterior middle
temporal gyrus (Badre, Poldrack, Paré-Blagoev, Insler, & Wagner,
2005; Bedny, McGill, & Thompson-Schill, 2008; Noonan, Jefferies,
Visser, & Lambon Ralph, 2013; Rodd et al., 2005; Thompson-Schill
et al., 1997; Whitney, Kirk, O’Sullivan, Lambon Ralph, & Jefferies,
2011a, 2011b; Zempleni et al., 2007). One long-standing source of
evidence for the importance of semantic control comes from stroke
patients who display semantic deficits following damage to these
areas (Harvey, Wei, Ellmore, Hamilton, & Schnur, 2013; Jefferies,
2013; Jefferies & Lambon Ralph, 2006; Noonan et al., 2010; Schnur,
Schwartz, Brecher, & Hodgson, 2006). These patients, often termed
semantic aphasics (SA, after Head, 1926), present with multimodal
semantic impairments but, unlike the SD patients described earlier,
their deficits have been linked with deregulated access to semantic
knowledge rather than damage to the semantic store itself. Moreover,
these patients’ performance on semantic tasks is strongly influenced
by the degree to which the task requires executive regulation and the
severity of their semantic impairments is correlated with their deficits
on nonsemantic tests of executive function (which is not the case in
SD; Jefferies & Lambon Ralph, 2006). Indeed, there is ongoing
debate as to the degree to which semantic control recruits shared
executive resources involved in other controlled processing in other
domains (we consider this in the General Discussion).

Semantic control deficits have been linked with the following
problems.

1. Difficulty tailoring activation of semantic knowledge to
the task at hand. This is evident in picture naming tasks,
in which SA patients frequently give responses that are
semantically associated with the pictured object but are
not its name (e.g., saying “nuts” when asked to name a
picture of a squirrel; Jefferies & Lambon Ralph, 2006). In
category fluency tasks, patients are also prone to name
items from outside the category being probed (Rogers et
al., 2015).

2. Difficulty selecting among competing semantic represen-
tations. SA patients perform poorly on semantic tasks
that require selection among competing responses, par-
ticularly when the most obvious or prepotent response is
not the correct one (Jefferies & Lambon Ralph, 2006;
Thompson-Schill et al., 1998). This problem is also ev-
ident in the “refractory access” effects exhibited by this
group, in which performance deteriorates when compe-
tition between representations is increased by presenting
a small set of semantically related items rapidly and
repeatedly (Jefferies, Baker, Doran, & Lambon Ralph,
2007; Warrington & Cipolotti, 1996). These deficits are
thought to reflect impairment in executive response se-
lection mechanisms.

3. Difficulty identifying weak or noncanonical semantic as-
sociations. SA patients find it difficult to identify weaker
semantic links between concepts (they can identify neck-
lace and bracelet as semantically related but not necklace
and trousers; Noonan et al., 2010). They have difficulty
activating the less frequent meanings of homonyms (see
Simulation 1). In the nonverbal domain, SA patients have

difficulty selecting an appropriate object to perform a
task when the canonical tool is unavailable (e.g., using a
newspaper to kill a fly in the absence of a fly swat;
Corbett, Jefferies, & Lambon Ralph, 2011). These results
may indicate deficits in top-down “controlled retrieval”
processes that regulate semantic activation in the absence
of strong stimulus-driven activity (see below).

4. High sensitivity to contextual cues. Performance on ver-
bal and nonverbal semantic tasks improves markedly
when patients are provided with external cues that boost
bottom-up activation of the correct information, thus
reducing the need for top-down control (Corbett et al.,
2011; Hoffman, Jefferies, & Lambon Ralph, 2010; Jef-
feries, Patterson, & Lambon Ralph, 2008; Soni et al.,
2009). For example, their comprehension of the less
common meanings of homonyms (e.g., bank-river) im-
proves when they are provided with a sentence that biases
activation toward the appropriate aspect of their meaning
(e.g., “They strolled along the bank;” Noonan et al.,
2010). These findings indicate that these individuals re-
tain the semantic representations needed to perform the
task but lack the control processes necessary to activate
them appropriately.

Despite the importance of control processes in regulating se-
mantic activity, this aspect of semantic cognition has rarely been
addressed in computational models. Where efforts have been
made, these have been based on the “guided activation” approach
to cognitive control (Botvinick & Cohen, 2014). On this approach,
representations of the current goal or task, often assumed to be
generated in prefrontal cortex, bias activation elsewhere in the
system to ensure task-appropriate behavior. The best-known ex-
ample of this approach is the connectionist account of the Stroop
effect, in which task units represent the goals “name word” and
“name color” and these potentiate activity in the rest of the
network, constraining it to produce the appropriate response on
each trial (Cohen, Dunbar, & McClelland, 1990). In the semantic
domain, models with hub-and-spoke architectures have used task
units to regulate the degree to which different spoke layers partic-
ipate in the completion of particular tasks (Dilkina et al., 2008;
Plaut, 2002). Although semantic control was not the focus of these
models, they do provide a plausible mechanism by which control
could be exercised in situations where the task-relevant informa-
tion is signaled by an explicit cue. For example, one task known to
have high semantic control demands is the feature selection task,
in which participants are instructed to match items based on a
specific attribute (e.g., their color) while ignoring other associa-
tions (e.g., salt goes with snow, not pepper; Thompson-Schill et
al., 1997). SA patients have great difficulty performing this task
(Thompson, 2012) and it generates prefrontal activation in a region
strongly associated with semantic control (Badre et al., 2005). To
simulate performance on this task in a hub-and-spoke architecture,
a task representation could be used to bias activation toward units
representing color and away from other attributes, thus biasing the
decision-making process toward the relevant information for the
task and avoiding the prepotent association.

In the present study, we consider a different aspect of semantic
control which, to our knowledge, has yet to receive any attention
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in the modeling literature. It is well-known that detecting weak
semantic associations (e.g., bee-pollen), compared with strong
ones (bee-honey), activates frontoparietal regions linked with se-
mantic control (Badre et al., 2005; Wagner, Paré-Blagoev, Clark,
& Poldrack, 2001). SA patients with damage to the semantic
control network also exhibit disproportionately severe deficits in
identifying weak associations (Noonan et al., 2010). However, the
cognitive demands of this task are rather different to the ones
described in the previous paragraph. In the Stroop and feature
selection tasks, participants are instructed to avoid a prepotent
response option in favor of a less obvious but task-appropriate
response. But in the weak association case, the difficulty arises
from the fact that none of the response options has a strong,
prepotent association with the probe word. For example, a partic-
ipant may be asked whether bee is more strongly associated with
knife, sand, or pollen. When one thinks of the concept of a bee, one
may automatically bring to mind their most common properties,
such as buzzing, flying, making honey, and living in hives. Be-
cause these dominant associations do not include any of the
response options, the correct answer can only be inferred by
activating the bees’ less salient role in pollinating flowers.

In this situation, when automatic, bottom-up processing of the
stimuli has failed to identify the correct response, it has been
proposed that participants engage in a top-down “controlled re-
trieval” process (Badre & Wagner, 2002; Gold & Buckner, 2002;
Wagner et al., 2001; Whitney et al., 2011b). Badre and Wagner
(2002) describe this process as follows:

Controlled semantic retrieval occurs when representations brought
online through automatic means are insufficient to meet task demands
or when some prior expectancy biases activation of certain conceptual
representations. Hence, controlled semantic retrieval may depend on a
top-down bias mechanism that has a representation of the task context,
either in the form of a task goal or some expectancy and that facilitates
processing of task-relevant information when that information is not
available through more automatic means. (p. 207)

Although various authors have discussed the notion of a con-
trolled retrieval mechanism for supporting the detection of weak
associations, no attempts have been made to specify how such a
process would actually operate. This is, we believe, a nontrivial
issue. Task representations of the kind described earlier are un-
likely to be helpful since the task instruction (“decide which option
is most associated with this word”) provides no clue as to what
aspect of the meaning of the stimulus will be relevant. In some
cases, prior semantic context may provide a useful guide (e.g., the
bee-pollen association may be detected more easily if one is first
primed by reading “the bee landed on the flower”). Indeed, Cohen
and Servan-Schreiber (1992) proposed a framework for cognitive
control in which deficits in controlled processing stemmed from an
inability to maintain internal representations of context. The same
mechanism was used to maintain task context in the Stroop task
and to maintain sentence context in a comprehension task. For
these researchers, then, the role of top-down control in semantic
tasks was to maintain a representation of prior context that can
guide meaning selection. However, in most of the experiments that
have investigated controlled retrieval, no contextual information
was available and thus this account is not applicable. Furthermore,
as we have stated, SA patients show strong positive effects of

context, which suggests that an inability to maintain context rep-
resentations is not the source of control deficits in this group.

How, then, do control processes influence activity in the seman-
tic network in order to detect weak relationships between con-
cepts? In the next section, we address this issue by describing an
explicit mechanism for controlled retrieval in our model. The core
assumption of our approach is that, in order to reach an appropriate
activation state that codes the relevant semantic information, the
semantic system must be simultaneously sensitive to the word
being probed and to its possible associates. Controlled retrieval
takes the form of a top-down mechanism that forces the network to
be influenced by all of this information as it settles, and which
iteratively adjusts the influence of each potential associate. In so
doing, the network is able to discover an activation state that
accommodates both the probe and the correct associate.

Controlled Retrieval of Semantic Information

To illustrate the controlled retrieval process, we need to intro-
duce an experimental task (Noonan et al., 2010) that will later form
the basis for Simulation 1. Figure 8 shows some example stimuli.
The experiment probes comprehension of homonyms using a 2
(meaning dominance) � 3 (context) design. On each trial, partic-
ipants are presented with a probe (head in Figure 8) and asked to
select which of four alternatives has the strongest semantic rela-
tionship with it. Half of the trials probe the dominant meanings of
the homonyms (e.g., head-foot) and half their subordinate mean-
ings (head-company). The subordinate trials represent a case in
which controlled retrieval is thought to be key in identifying the
correct response, because bottom-up semantic activation in re-
sponse to the probe will tend toward its dominant meaning. Fur-
thermore, each trial can be preceded by one of three types of
context: either a sentence that primes the relevant meaning of the
word (correct cue), a sentence that primes the opposing meaning
(miscue), or no sentence at all (no cue). These conditions are
randomly intermixed throughout the task so that participants are
not aware whether the cue they receive on each trial is helpful or
not. The context manipulation allows us to explore how external
cues can bias semantic processing toward or away from aspects of
meaning relevant to the task.

The top-left panel of Figure 9 shows performance on the task by
seven SA patients studied by Noonan et al. (2010; see Simulation
1 for more further details). In the no-cue condition, patients were
more successful when dominant, prepotent meanings were probed,
relative to subordinate ones, and this result was attributed to
impairment of controlled retrieval. Provision of correct contextual
information improved performance for the subordinate meanings,
so that these items reach a similar accuracy level to the dominant
trials. This is thought to occur because the guiding context elicits
strong, bottom-up activation of the trial-appropriate meaning, re-
ducing the need for controlled retrieval. Incorrect contextual in-
formation, in contrast, had a negative effect.

To explore the effects of these manipulations in our model, we
must first adopt a procedure by which the network can complete
the task. We believe that responses in lexical association tasks of
this kind are heavily influenced by the co-occurrence rates of the
various response options in natural language contexts (see Barsa-
lou et al., 2008). In the model, this information is represented by
the activations of the prediction units. To simulate the task in
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the model, we therefore present a probe word as input, allow the
model to settle and then read off the activations of the predic-
tion units representing the four response options. The option
with the highest activation is the one that the model considers
most likely to co-occur with the probe and should be selected as
the response.

Response selection is, however, a complex process. Human
decision-making processes are typically stochastic in nature (e.g.,
Usher & McClelland, 2001) and, in the semantic domain in par-
ticular, regions of prefrontal cortex have been linked with resolv-
ing competition between possible responses (Badre et al., 2005;
Thompson-Schill et al., 1997). To simulate the potential for error
at the response selection stage, we add a small amount of noise,
sampled from a Gaussian distribution, to each of the activations
before selecting the option with the highest activation. The effect
of this step varies according to the difference in activation between
the most active option and its competitors. When the most active
option far exceeds its competitors, the small perturbation of the
activations has no effect on the outcome. But when two options

have very similar activation levels, the addition of a small amount
of noise can affect which is selected as the response. Therefore,
this stochastic element introduces a degree of uncertainty about the
correct response when two options appear similarly plausible to
the model.

Finally, we also manipulate context as in the original experi-
ment. On no-cue trials, the context units are assigned a random
pattern of activity. On cued and miscued trials, the model pro-
cesses a context word prior to the probe, which is consistent with
either the trial-appropriate or inappropriate meaning of the word.
For example, a trial where the model is required to match bank
with cashier could be preceded by either economics or plant.

What happens when we use this procedure to test the model’s
abilities using stimuli analogous to those shown in Figure 8?
Figure 10 shows the mean activations of the prediction units
representing the dominant and subordinate targets in this task, as
well as the alternative options (these results are averaged across
trials probing all 10 of the model’s homonyms; for further details,
see Simulation 1). The results from the uncued condition illus-

Figure 8. Example trials from the homonym comprehension task.
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trate the limitations of the model (which, at this stage, has no
mechanism for controlled retrieval). As expected, the target
relating to the dominant meaning is strongly activated such that,
even when the stochastic response selection process is applied,
the model is likely to distinguish the correct response from the
foils. The subordinate target, however, is much less differenti-
ated from the foils, so there is a greater chance that one of the
three foils might be incorrectly selected. Context can modulate
these effects in either direction. On correctly cued trials, the
model’s expectations are shifted toward the trial-appropriate
interpretation of the probe. Subordinate targets therefore be-
come just as strongly predicted as dominant targets and are
unlikely to be confused with foils. Conversely, when context
primes the incorrect meaning of the word, the model fails to
activate the target very strongly for either trial type. Thus, like
the SA patients, the model’s ability to discriminate the target

from its competitors is highly dependent on the degree to which
the target receives strong bottom-up activation.

One of the reasons for this pattern of performance is that there
are a range of activation states that the network can adopt for any
given word, depending on the context in which it is processed. An
appropriate context boosts the prediction signal for the subordinate
targets because it constrains the model to reach an activation state
for the probe that is consistent with its subordinate meaning. Our
controlled retrieval process involves an internally generated source
of constraint over the network that has a similar effect. Specifi-
cally, we force the model to process the probe and the various
response options simultaneously. Our model has no prior experi-
ence of processing multiple words at the same time: During
training, words are presented sequentially but not simultaneously.
However, due to the graded, constraint-satisfaction properties of
neural networks, at any given moment, the model attempts to settle
into a state that is compatible with all of the inputs it is receiving.
If, for example, the network is presented with both bank and
cashier simultaneously, the hub units will settle into a hybrid state
that is close to a viable representation of both words. As we show
later on, this state is very different to that obtained if the network
were presented with bank and river.

The effects of simultaneous processing of multiple inputs form
the basis of the controlled retrieval process. We introduce an
executive regulation mechanism that ensures the network’s activ-
ity is influenced by the response options as well as the probe
during each trial. The goal of this mechanism is to ensure that the
model settles into a state that is compatible with the probe and
target but not with the other options. Of course, to begin with the
model is not aware which of the four alternatives is the target.
Controlled retrieval therefore takes the form of an iterative process
that ensures that the model’s processing is initially influenced
equally by all four alternatives, but as evidence accrues for one of
the four options, this option is given greater influence over pro-
cessing.

An example of this process is shown in Figure 11, in which
the model is required to select river as being linked to bank (see

Figure 9. Target data and model performance for Simulation 1.

Figure 10. Activation of response options in the model with no control processes. The bars in the bottom right
corner of each plot show the standard deviation of the Gaussian function used to add noise to each activation.
See the online article for the color version of this figure.
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Panel A). Panel B shows the inputs to the model as it processes
this trial and Panel C shows the activations of the prediction
units for the four possible responses. Panel D provides a graph-
ical illustration of the network at three points during processing.
At any point in time, the input to the hub consists of bank and
a weighted combination of the four response options. The
weighting of the options, which is subject to top-down control,
is determined by the values of their prediction units in the
previous timepoint (for full implementation details, see Simu-
lation 1). Before the network begins to settle, it considers each
of the four options equally probable and they are all given equal
weight as inputs to the model. This means that the model is
constrained to settle into a state that is primarily influenced by
bank but is also as compatible as possible with bus, river,
orange and boot. Because there are states for bank that are

rather close to river but no such states for the other options, the
network begins to move toward an interpretation of bank that
fits with river. As the network moves toward this state, the
prediction value for river begins to increase while the values for
the other options decrease. As a consequence, the control mech-
anism affords greater influence to this item, weighting it more
heavily in the input to the hub. This in turn pushes the model
further toward the river-compatible state, increasing its predic-
tion value further. By the end of the trial, two things are
apparent. First, the prediction value for river far outstrips that
of the other options. This means that when the model comes to
respond, it has no difficulty in identifying that river is the
correct response. Note that this would not be the case without
the application of the controlled retrieval process (see dashed
line in Panel C).

Figure 11. The controlled retrieval process. (A) The model is asked to decide which of four alternatives is most
semantically related to bank. (B) Input to the model during settling. The model receives sustained input of the
probe and a weighted combination of the possible responses. As the prediction for river strengthens, it comes
to dominate the input. (C). Activation of prediction units during settling. The controlled retrieval process boosts
the activation of river, relative to the level it would receive from processing of the probe alone (dashed line). (D)
Graphical representation of settling. Elements of the controlled retrieval mechanism are shown in red. See the
online article for the color version of this figure.
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The second feature is that the input to the model is dominated
by both bank and river. This means that the hub has been guided
into an activation state that fits with both bank and river, rather
than processing bank in its canonical sense. This is illustrated in
Figure 12. As in previous figures, we used multidimensional
scaling to plot the relationships between the model’s learned
representations for all words. These relationships are averaged
across many randomly generated contexts, so the representation

of bank is closer to that of cashier, reflecting its dominant
pattern of usage. In addition, we have plotted the states of the
hub units when the model processes the bank trial, either in its
subordinate sense (bank-river) or its dominant sense (bank-
cashier). These activations were recorded at various points
during processing, allowing us to plot the model’s trajectory
through semantic space as it settles. Without controlled re-
trieval, the model processes bank in isolation and therefore

Figure 12. Model’s trajectory through semantic space during the bank trial. This plot illustrates the effect of
controlled retrieval on the model’s internal representations. We first presented each word to the model in turn,
allowed it to settle and recorded activity of the hub layer. Multidimensional scaling was used to plot the
relationships between these states in a two-dimensional space (words used in the current trial are highlighted).
We then recorded the activity of the hub units as the model completed the dominant and subordinate versions
of the bank trial with and without controlled retrieval (CR). The lines plot the trajectory taken by the model
through the semantic space as it settled. Without controlled retrieval, settling is determined solely by the identity
of the probe, resulting in similar paths on dominant and subordinate trials, both of which end near the canonical
representation of bank. Under controlled retrieval, settling is constrained by both probe and target. As a
consequence, the model is deflected into areas of the semantic space somewhere between bank and either cashier
or tree. See the online article for the color version of this figure.
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settles into its most frequent pattern of usage, irrespective of
whether the trial is probing the dominant or the subordinate
meaning. In contrast, the controlled retrieval mechanism forces
the behavior of the network to be influenced by the response
options as well as the probe. This has the effect of shifting the
network toward a different part of the semantic space, closer to
the representation for either cashier or river (depending on
which is available as a response). In a sense, therefore, the
model ends the trial by “thinking about” a situation in which
bank and the correct response could both appear.

Summary

To use semantic information effectively, control processes
are required to shape activation of knowledge to conform to the
task at hand. One hypothesized control process is the notion of
controlled retrieval, a top-down mechanism that guides activa-
tion of the appropriate semantic knowledge when the relevant
representation is not automatically activated by bottom-up stim-
ulus processing. We have implemented a mechanism for con-
trolled retrieval in our model, which constrains the network to
take multiple response alternatives into account when process-
ing a particular word. Through an iterative feedback process,
the network discovers which of the four options is most com-
patible with the probe and settles into an activation state com-
patible with that option.

Our model now has the key elements involved in semantic
cognition: a set of semantic representations acquired through ex-
perience in the environment and a control process that regulates
how these representations are activated and selected. We are now
in a position to test how well the model’s behavior replicates
human performance on semantic tasks. In the following section,
we do this by probing (a) the ability of the intact model to perform
semantic tasks in a similar way to healthy participants and (b) the
ability of the model to mimic the effects of damage to either
semantic representation or semantic control in patients with SD
and SA, respectively. We test this in three simulations of verbal
comprehension tasks.

Simulation 1: Comprehension of Homonyms in
Semantic Aphasia

In this simulation, we test the model’s ability to perform Noonan
et al.’s (2010) homonym comprehension task, which we have
already described. We also test the degree to which damage to the
model’s control processes produces impairments similar to those
observed in SA.

Target data. Noonan et al. (2010) tested seven patients with
SA and eight age-matched healthy controls using the comprehen-
sion task described in the previous section (see Figure 8). The
controls performed close to ceiling in all conditions but, as we
have already described, the SA patients demonstrated (a) impair-
ment on the task overall and (b) greater impairment for trials
probing the subordinate meanings of words, and (c) a strong
influence of context that interacted with meaning dominance.
These data are shown on the left of Figure 9.

Test construction for simulation. To simulate Noonan et
al.’s (2010) data, we constructed two trials for each of the 10
homonyms in the model’s vocabulary. Each trial consisted of a

probe (the homonym), a target (semantically related to either its
dominant or subordinate usage), and three unrelated foils. To
assess the strength of the relationships between probes and targets,
we computed the co-occurrence rate of each target given the
probe. This value represents the proportion of times the probe was
immediately followed by the target in the model’s training corpus.
The co-occurrence rate for dominant targets (M � .077; range �
.048–.099) was higher than that of subordinate targets (M � .033;
range � .019–.052), indicating that the dominant targets were
indeed more strongly associated with the probes in the model’s
experience. In contrast, the foils always had a co-occurrence rate
of 0 (i.e., they never occurred in the same context as the probe
during training).

Simulation method. Testing of the model proceeded as
follows. First, we instantiated the context in which the model
would process the trial. When testing patients and controls,
Noonan et al. (2010) presented a whole sentence that primed
one particular interpretation of the probe. In the model, we
presented a single word. On Correct Cue trials, we presented a
word that was related to the trial-appropriate usage of the probe
(e.g., on the bank-cashier trial, we presented economics). The
network processed this word in the usual way. Having settled,
the activation pattern over the hub units was copied to the
context units, ready to influence processing when the network
was presented with the probe and response options. The process
was the same for miscue trials, except that the cue was related
to the trial-inappropriate usage. On no cue trials, no cue word
was presented; instead, we assigned the context units a random
pattern of activity, so that no meaningful context was available
to influence the decision-making process.

Next, we presented the probe and response options to the model
for a total of seven time steps. At each point during processing, the
input to the model consisted of the probe and a weighted combi-
nation of the four response options. To compute the weighting, the
activation of the prediction units for the four options were sub-
jected to a softmax transformation. The input value I for option j
was given by the formula

Ij �
exp(sPj)

�k�1
4 exp(sPk)

Where Pj denotes the activation of the prediction unit for option j
and s is a constant that governs how sensitive the input values are
to changes in the prediction values. The transformation ensured
that the four inputs always summed to one but that options with
larger prediction values were weighted more strongly. We set s to
200 in all simulations, based on pilot work.

At the end of processing, the prediction values for each of the
four response options were recorded. Noise, sampled from a
Gaussian distribution with a mean of 0 and standard deviation of
0.01, was added to each of them. Following this step, the option
with the highest prediction value was taken as the model’s re-
sponse.

This process was repeated 200 times for each trial (20 times in
each of the 10 models trained with different starting weights) and
the results averaged to provide a measure of neurologically intact
performance in the model.

Damage. To simulate the performance of SA patients, we
disrupted the executive mechanisms assumed to be impaired in this
condition. First, we removed the controlled retrieval process. This
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meant that the model’s behavior was driven solely by the
bottom-up activity elicited by the probe and the model was not
constrained to find an activation state that fitted the response
options as well. In addition, we increased the standard deviation of
the Gaussian noise added at the response selection stage, from 0.01
to 0.045. This weakening of the selection process reflects the fact
that SA patients also have difficulty with selecting among com-
peting response options, which is assumed to be another important
element of semantic control (Badre et al., 2005; Thompson-Schill
et al., 1997). The figure of 0.045 was selected so that the model’s
overall accuracy on the task was as close as possible to the
patients’.

Results. Model performance is presented in Figure 9, along-
side the results reported by Noonan et al. (2010). Noonan et al.
(2010) analyzed their human data using a 2 (impairment) � 2
(dominance) � 3 (cue) ANOVA. We performed the same analyses
on the model data, treating each of the 10 trained models as a
separate case in the analysis (see Table 1). In the human data, SA
patients showed larger effects of the dominance manipulation than
controls, demonstrating particularly poor comprehension of sub-
ordinate meanings. They also showed larger effects of the cue
manipulation and there was a three-way interaction between these
factors, indicating that the advantage for dominant meanings was
attenuated when a correct cue was provided. All of these effects
were replicated in the model.

Effects of alternative forms of damage. The performance of
the model under damage (no controlled retrieval plus additional
noise at the response selection stage) closely resembles the pattern
shown by patients with SA. It is important to establish the degree
to which these effects are a consequence of the specific type of
damage we applied and not simply a more general consequence of
weakening the model. To assess this, we tested the model under
three different types of damage (see Figure 13). Panel (a) shows
the effect of removing the model’s ability to perform controlled
retrieval without changing the noisiness of response selection.
Under these conditions, the model demonstrates a strong cueing
effect, indicating that controlled retrieval is important for support-
ing performance when contextual information is absent or mis-
leading. However, overall levels of performance were higher than
observed in SA patients, suggesting that these patients’ control
deficits extend beyond a difficulty with controlled retrieval. When
we disrupted response selection by increasing the level of noise,
but allowed the model to use controlled retrieval (Panel b), there
was a general depression in performance but little effect of mean-
ing dominance or cueing. Finally, we tested the effect of removing
connections projecting in and out of the model’s hub layer
(Panel c). This form of damage (which we will use to simulate SD
patients in later simulations) degrades the model’s representational
substrate but not its control processes. Again, this form of damage

Table 1
Analyses of Human and Model Performance in Simulation 1

Effect

Human Model

df F p df F p

Impairment 1, 13 74.3 �.001 1, 9 2692 �.001
Dominance 1, 13 11.58 �.005 1, 9 218 �.001
Cue 2, 26 35.88 �.001 2, 18 983 �.001
Dominance � Impairment 1, 13 6.16 �.005 1, 9 69.8 �.001
Cue � Impairment 2, 26 29.51 �.001 2, 18 226 �.001
Dominance � Cue � Impairment 2, 26 8.0 �.005 2, 18 17.1 �.001

Note. Analyses of human data were reported by Noonan et al. (2010). Analyses of model data treated each of
the ten trained models (each trained in the same way but initialized with different random weights) as a separate
case. Impairment was treated as within-models factor, since each model was tested before and after damage.

Figure 13. Model performance in Simulation 1 under alternative forms of damage.
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degraded performance but did not produce the strong effects of cue
type observed in SA.

Accounting for the success of controlled retrieval. There are
two potentially important elements of the controlled retrieval mech-
anism that may explain its success in identifying the homonyms’
nondominant associations. First, it forces the network’s processing of
the probe to be colored by the available potential responses and
second, it controls the relative weighting of those response options
based on the network’s current predictions. Is the adaptive weighting
of the response options necessary, or would it be sufficient to simply
provide all of the alternatives as input with equal influence afforded to
each? To investigate this, we tested an alternative form of the con-
trolled retrieval mechanism in which the response options were in-
cluded in the input to the hub but they were not weighted based on
feedback from the prediction units. Instead, each response option
received a static weighting of 0.25 (so that the four response weights
still summed to one). Performance of this version of the model is
shown in Figure 14. It performed well in the cued condition and for
the dominant meanings in the uncued condition, but it was much less
successful in the other conditions (cf. the intact model in Figure 12).
This indicates that an iterative control process, whereby feedback is
used to continually adjust the degree to which each option influences
the network’s state, is critical in ensuring that the network discovers
the correct activation state for weak or nondominant semantic rela-
tionships.

Discussion. The intact model, with its controlled retrieval mech-
anism, was able to select which of four words was associated with a
presented homonym, even when the target related to its subordinate
meaning. When the controlled retrieval process was removed and the
model’s response selection process impaired, the results closely re-
sembled performance that of patients with SA. Performance on sub-
ordinate trials was disproportionately affected and the model became
much more reliant on context for guiding it toward the correct re-
sponse. These results indicate that the controlled retrieval process we
have implemented provides a plausible account of how top-down
control influences performance on this task.

Simulation 2: Effects of Frequency, Imageability, and
Semantic Diversity on Semantic Judgments in SD and SA

We have demonstrated that damage to the model’s controlled
retrieval mechanism produces deficits in a verbal comprehension
task similar to those observed in SA patients with semantic control
deficits. In the second simulation, we tested the model’s ability to
mimic the divergent patterns of impairment exhibited by SD and
SA patients. As we have already alluded to, even when patients
with SD and SA show similar levels of impairment on semantic
tasks, the details of their impairments are very different. These
qualitative differences are thought to indicate damage to semantic
representations or to semantic control processes respectively (Jef-
feries, 2013; Jefferies & Lambon Ralph, 2006; Rogers et al.,
2015). If our model provides an accurate account of both semantic
representation and control, then damage to these two elements of
the model should simulate the divergent effects observed in these
two disorders. To test this, we focused on data reported by Hoff-
man, Rogers, and Lambon Ralph (2011b), in which matched
groups of SD and SA patients completed a verbal semantic judg-
ment task. Hoffman et al. investigated the psycholinguistic factors
influencing performance in each group. Despite similar overall
levels of impairment, the two groups displayed divergent effects of
word frequency, imageability, and semantic diversity, which were
hypothesized to be a consequence of impaired semantic represen-
tation versus control. Here, we tested whether the model would
display similar effects under damage to either its representational
hub or its control processes.

Target data. Hoffman et al. (2011b) presented data from 13
patients with SA and 13 with SD. Patients completed a semantic
judgment task in which they were presented with a probe word and
asked which of three alternatives was similar in meaning (Jefferies
et al., 2009). A multiple regression approach was used to investi-
gate the factors that governed each group’s performance on the
task. Specifically, we investigated how the following three psy-
cholinguistic factors influenced the patients’ ability to make se-
mantic judgments.

Semantic diversity. This is a measure of the contextual vari-
ability of words, derived empirically by determining the level of
similarity among all the contexts in which a particular word is used
(Hoffman et al., 2013b). The measure is motivated by the idea,
implicit in distributional approaches to semantics, that the meaning
of a word changes every time it is used in a different context. On
this view, all words are somewhat polysemous, with the degree of
variation in their meaning depending on the degree to which they
are used in a wide variety of contexts (Cruse, 1986; Hoffman et al.,
2013b; Landauer, 2001). The semantic diversity measure assesses
this variation empirically, through analysis of a large corpus of text
samples. Words with low semantic diversity are used in a restricted
set of closely related contexts, while those with high diversity are
found in a wide range of disparate contexts.

SA patients showed a strong negative effect of semantic diver-
sity, performing more poorly with words that are used in a wide
range of different contexts. We hypothesized that this is because
the meanings of highly diverse words change when they are used
in different situations. As consequence, activating the task-
appropriate semantic representation for such words places greater
demands on controlled retrieval processes (just as these processes
were necessary for activating the appropriate representation for

Figure 14. Performance of the intact model in Simulation 1 with an
alternative form of controlled retrieval.
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homonyms in Simulation 1). In contrast, performance in the SD
group was not affected by semantic diversity, in line with the idea
that these patients’ deficits are not linked with executive impair-
ment.

Imageability. Imageability refers to the ease with which a
word elicits mental imagery, and is therefore an index of how
concrete or abstract a word is (Paivio, Yuille, & Madigan, 1968).
Both patient groups displayed better comprehension of highly
imageable words. In the case of SD, we have hypothesized that,
because they lack grounding in the S-M experience, abstract con-
cepts are represented weaker in the semantic hub. As a conse-
quence, damage to the hub has a particularly adverse effect on
these words (Hoffman, 2016; Hoffman & Lambon Ralph, 2011).
The explanation for SA patients is less clear. Abstract words tend
to be more semantically diverse than concrete words (Hoffman et
al., 2013b); however, this is not a complete explanation as the
imageability effect remained significant in a simultaneous regres-
sion that controlled for semantic diversity.

Frequency. Word frequency has an almost ubiquitous effect
in language processing tasks. In SD, we observed a strong fre-
quency effect, with much better comprehension of more frequent
words. This effect has been observed in many studies of SD
(Bozeat et al., 2000; Funnell, 1995; Jefferies et al., 2009) and
reflects the tendency for concepts that are encountered more fre-
quently to be represented more robustly in the semantic system
(Rogers & McClelland, 2004). In contrast, frequency effects are
typically weak or absent in patients with SA (Almaghyuli, Thomp-
son, Lambon Ralph, & Jefferies, 2012; Hoffman, Jefferies, &
Lambon Ralph, 2011a; Jefferies & Lambon Ralph, 2006). Hoff-
man et al. (2011b) demonstrated that this was because high fre-
quency words tend to be highly semantically diverse and therefore
place high demands on the patients’ impaired control processes,
counteracting the usual advantage for these words. When semantic
diversity was controlled for statistically, a small effect of fre-
quency did emerge for SA patients, although this was much
weaker than the effect observed in SD.

In summary, SA patients with damage to control processes
displayed poor comprehension of words of high semantic diver-
sity, while representational damage in SD was characterized by
especially poor comprehension of low frequency words. Both
groups were better at making judgments to more imageable words.
We investigated whether the model would display similar behavior
under damage intended to mimic each disorder.

Test construction for simulation. In order to investigate the
influence of psycholinguistic properties on the model, it was vital
that our training corpus embodied these properties in as realistic a
fashion as possible. We therefore used analyses of actual language
use to guide construction of the training and testing environments.
We begin by describing how each of the psycholinguistic variables
were operationalized in the training environment.

Semantic diversity. The model’s training corpus was gener-
ated by sampling from a set of topics, each of which consisted of
a probability distribution over a subset of the words known to the
model. All the words in the model’s vocabulary appeared in at
least three different topics, but the topics were designed such that
some words appeared in a restricted set of topics while others
could occur in many disparate topics. To quantify this variation,
we computed a semantic diversity value for each word. Semantic
diversity is calculated by performing latent semantic analysis on a

large corpus of natural language samples (Hoffman et al., 2013b).
The result is that each sample (or context) in the corpus is repre-
sented by a vector that describes its location in a high-dimensional
semantic space. Contexts that contain similar words have similar
vectors and, under the distributional principle, are assumed to be
similar in their semantic content. To compute the semantic diver-
sity for a particular word, one calculates the pairwise similarities
between the vectors representing all of the contexts that contain the
word. This value is then log-transformed and its sign reversed, so
that higher values indicate greater dissimilarity between the vari-
ous contexts in which the word is used.

The exact same process was performed on the model’s training
corpus to compute semantic diversity values for each of the words
in its vocabulary. The least diverse word (deer) had a value of 0.13
and the most diverse (lorry) 0.76. In previous work (Hoffman et
al., 2013b; Hoffman & Woollams, 2015), we have proposed that
the semantic representations of highly diverse words are very
variable and that this makes them more difficult to process in
semantic tasks. To test whether this held true in the model, we
presented each word in 64 different contexts (i.e., in the context of
each word in its vocabulary) and recorded the representations over
the hub units. We then computed the pairwise similarities between
the representations for the same word in these different contexts,
providing a measure of the word’s representational consistency.
There was a strong negative correlation between consistency in
representation and semantic diversity, r � �0.36, p � .004. Thus,
as predicted, the emergent consequence of words being used in a
broad range of contexts is that they develop semantic representa-
tions that vary greatly across contexts.

Imageability. In their analyses of patient data, Hoffman et al.
(2011b) treated imageability as a continuous variable. In the model,
however, imageability is implemented as a binary distinction (the
model is trained to associate the 22 concrete words with S-M prop-
erties, while no such training is provided for the 32 abstract words).
Nevertheless, we were keen to ensure that the relationship between
imageability and semantic diversity in the model accurately reflected
that seen in real language. Because the verbal input units in the model
notionally represent real English words, we obtained the semantic
diversity of those words in a published database derived from the
British National Corpus (Hoffman et al., 2013b). We found that the
concrete words had lower semantic diversity values (M � 1.50) than
the abstract words (M � 1.80; t(52) � 5.28, p � .001). This rela-
tionship is also present in larger samples of words (Hoffman et al.,
2013b). We therefore ensured that, in the model, the concrete words
had lower semantic diversity values than the abstract words (concrete
M � 0.49; abstract M � 0.56).

Frequency. Word frequency was manipulated in the model by
varying the number of topics particular words appeared in, the
probability of selection within those topics, and by ensuring that
some topics were sampled more often than others. As a conse-
quence, the most frequent word (lorry) occurred in the training set
17 times more often than the least frequent word (team). To ensure
that the relationships between frequency and the other psycholin-
guistic variables accurately mimicked those seen in natural lan-
guage, we again investigated the properties of the real English
words upon which the model’s vocabulary was based. We found a
strong positive correlation between frequency and semantic diver-
sity, r � .57, p � .001: higher frequency words tended to be more
semantically diverse. We therefore replicated this effect in the
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model, r � .64, p � .001. Because frequency and imageability are
both correlated with semantic diversity, to investigate the relation-
ship between these two variables, we computed their partial cor-
relation while controlling for semantic diversity. There was no
relationship between frequency and imageability, r � �0.08, p �
.53. Accordingly, we ensured that no such relationship was present
in the model’s training environment, r � .15, p � .28.

Test construction. To test the model, a semantic judgment
task was constructed that corresponded as closely as possible to the
test used by Hoffman et al. (2011b) to investigate performance in
SD and SA patients. Each trial in the neuropsychological study
comprised a probe, a target that was similar to it in meaning and
two unrelated foils. We constructed one such trial for each of the
22 concrete and 32 abstract words in the model’s vocabulary.
Probe-target pairings for abstract words are shown in Figure 2. The
targets on concrete trials were always a concrete item from the
same category as the probe.

In addition to ensuring that the distribution of psycholinguistic
properties in the model was closely representative of real language,
it was critical that the materials used to test the model closely
matched the test used with the patients. For this reason, when we
constructed the semantic judgment test for the model, we paid
close attention to the relationship between the probe and target on
each trial. Performance in the model is strongly influenced by the
co-occurrence rate of the target with the probe during training.
When the target frequently occurs immediately after the probe
during training, the model learns to strongly activate the target’s
prediction unit when it is presented with the probe. This strong
prediction value makes it easy for the model to select the target as
the correct response. Because co-occurrence rate is an important
driving factor in the model, we investigated how this property is
related to other psycholinguistic variables in real language. We did
this by taking each trial from the neuropsychological test used by
Hoffman et al. (2011b) and finding each occurrence of the probe
in the British National Corpus (British National Corpus Consor-
tium, 2007). We then computed in what proportion of those
occurrences, the target appeared in the next 10 words in the corpus.
This represented the co-occurrence rate of the target with the probe
in a large corpus of natural language.

We used a simultaneous multiple regression model to investi-
gate how frequency, imageability and semantic diversity were
related to co-occurrence rates in the neuropsychological test. Trials
featuring higher frequency words and lower semantic diversity
words tended to have higher co-occurrence rates (see Table 2).
When constructing the test for the model, we were careful to

replicate this pattern (see lower half of Table 2). As a result, the
psycholinguistic properties we investigated in the model were
related to the difficulty of individual trials in ways that accurately
reflect the neuropsychological test used to collect the patient data.

Simulation method. The procedure for testing the model was
similar to Simulation 1. No contextual information was available
to patients in the Hoffman et al. (2011b) study, so the context layer
was reset to a random pattern of activity at the start of each trial.
The model was then presented with the probe. The predictions
for the three response options were processed by the controlled
retrieval mechanism, which iteratively regulated the network’s
activity as described previously. At the end of the processing
window, the most active option, after the addition of Gaussian
noise, was selected as the response. Each trial was presented 200
times and the results averaged to give a measure of intact model
performance.

Damage. To simulate semantic control deficits in SA, we
again removed the controlled retrieval mechanism and increased
the standard deviation of the Gaussian noise added at the response
selection stage. This was increased from 0.01 to 0.04; this value
was selected because it gave overall accuracy levels that were very
closely matched to the target dataset. Again, each trial was pre-
sented 200 times and the results averaged. To simulate damage to
the semantic hub in SD, we removed a certain proportion of the
links projecting in and out of the hub layer, thus degrading the
function of this crucial element of the model (Rogers et al., 2004).
We removed 30% of the links as this level of damage gave the
closest fit to the target dataset in terms of overall accuracy. Each
of the 10 trained models was damaged 20 times and tested, again
yielding 200 presentations for each trial.

Results. Accuracy in the model and in the target dataset are
presented at the top of Figure 15. Without damage, the model
completed 97% of trials accurately, which is similar to the level
achieved by healthy participants completing the neuropsycholog-
ical test. Under damage, accuracy levels in the model were closely
matched to the patients. To investigate the influence of psycholin-
guistic properties on model performance, we performed a linear
regression analysis in which probe frequency, imageability and
semantic diversity were used as predictors of performance on
individual trials. The results are shown in Table 4, alongside the
corresponding results from the patient data. The correlation ma-
trices for both analyses are shown in Table 3 and the beta weights
are illustrated graphically in Figure 15. Results in the model show
strong convergence with those in the target dataset. Imageability
had a positive effect on model performance under damage to both
control processes and representations. Similarly, both SD and SA
showed a positive effect of imageability. Following damage to
control processes, the model showed a weak positive effect of
frequency and a strong negative influence of semantic diversity.
This was precisely the pattern observed in SA patients. In contrast,
damage to the model’s hub layer resulted in a strong positive effect
of frequency and no effect of semantic diversity. Likewise, SD
patients showed a strong frequency effect and a nonsignificant
semantic diversity effect.

To determine the degree to which probe-target co-occurrence
rates were responsible for these results, we added this factor as an
additional predictor to the regression analyses. Inclusion of co-
occurrence rates did not improve ability to predict performance in
the model with damage to the hub, �R2 � 0.011; F(1, 49) � 0.93,

Table 2
Regression Analysis of Probe-Target Co-Occurrence Rates in
Simulation 2

Effect R2 p 	 p

Neuropsychological test .12 .010
Frequency .33 .014
Imageability .08 .467
Semantic diversity �.35 .011

Model test .15 .038
Frequency .31 .078
Imageability .10 .456
Semantic diversity �.46 .012
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p � .34. This indicates the co-occurrence rates of the probes and
targets were not a major factor in determining how the model
performed following representational damage. In contrast, there
was a significant improvement in the fit for the model with damage
to control processes, �R2 � 0.291; F(1, 49) � 35.7, p � .001.
Following the addition of co-occurrence rates, imageability re-
mained a significant predictor of performance (	 � 0.28, p �
.005) but frequency was not (	 � �0.04, p � .73) and nor was
semantic diversity (	 � �0.17, p � .19). This indicates that, when
the model’s control processes are damaged, the rate with which the
target and probe have occurred together in its prior experience

is the main determinant of whether it is able to match them at test.
The effects of frequency and semantic diversity in this case can be
attributed to this underlying factor.

Finally, to test for potential interactions between imageability,
frequency, and semantic diversity we ran linear mixed effects
models on the results (with model number and probe as random
factors). There were no interactions following damage to the
network’s control processes. However, there was an interaction
between frequency and imageability for the models with damaged

Figure 15. Target data and model performance for Simulation 2. (A) Accuracy levels for human data and in
the model (healthy control data taken from Hoffman et al., 2013b; patient data from Hoffman et al., 2011b). (B)
Beta values from linear regression models that used psycholinguistic properties to predict human and model
performance on individual trials.

Table 3
Correlation Matrices for Human and Model Data in Simulation 2

Effect Imageability
Semantic
diversity

SD
accuracy

SA
accuracy

Human data

Frequency �.021 .596�� .528�� �.053
Imageability — �.361�� .413�� .465��

Semantic diversity — .069 �.438��

SD accuracy — .412��

Model data

Frequency �.086 .465�� .616�� .061
Imageability — �.327� .207 .352�

Semantic diversity — .246 �.352�

SD accuracy — .270�

Note. Human data were originally reported by Hoffman, Rogers, and
Ralph, (2011b).
� p � .05. �� p � .001.

Table 4
Regression Analyses of Human and Model Data in Simulation 2

Effect R2 p 	 p

Human—SD .478 �.001
Frequency .65 �.001
Imageability .36 �.001
Semantic diversity �.19 .081

Human—SA .333 �.001
Frequency .23 .042
Imageability .30 .002
Semantic diversity �.47 �.001

Model—SD .449 �.001
Frequency .62 �.001
Imageability .28 .017
Semantic diversity .05 .700

Model—SA .242 .003
Frequency .27 .062
Imageability .25 .066
Semantic diversity �.40 .010

Note. SD � semantic dementia; SA � semantic aphasics.
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hub representations (
2 � 2.58, p � .01). Under this type of
damage, the effect of frequency was larger for the concrete words.

Discussion. We investigated the model’s ability to make se-
mantic judgments following damage to either its control processes
or its representational substrate. Although the overall level of
impairment in these two cases was matched, the factors underpin-
ning the deficits were different and closely matched the divergent
patterns observed in patients with SD versus SA. When the mo-
del’s control processes were disrupted, it became highly sensitive
to the semantic diversity of the words being probed, performing
poorly with words that appeared in many different contexts. It also
displayed a modest sensitivity to word frequency. Importantly, the
rate at which the probe and target had co-occurred during training
appeared to be the root cause of these effects. When a word
appears in many different contexts, it shares semantic relatedness
with a wide range of different words but co-occurs with each of
those other words less frequently. As a consequence, when the
model is presented with such a word as a probe, it activates weak
predictions for a wide range of words, each of which could
potentially occur in the same context as the probe. These weak
predictions make it hard to differentiate the target from the other
response options. In the intact model, the controlled retrieval
process ameliorates this problem by forcing the network into a
state in which it does have a strong expectation of the target
appearing, as seen in Simulation 1. But when this process does not
function, the weak prediction for the target does not strongly
differentiate it from its foils. Disruption to the response selection
process, by making this stage nosier, further exacerbates the prob-
lem. In short, the model suggests that SA patients find it hard to
make semantic decisions about words with high semantic diversity
because these words weakly activate a wide range of potentially
associated words. Reliably identifying the correct word in these
circumstances requires top-down support from the executive sys-
tem, which is not available to these individuals. The effects of
homonym comprehension presented in Simulation 1 can be con-
sidered a special case of this more general effect of contextual
variability.

In contrast, when the model’s semantic hub was damaged,
performance was not governed by semantic diversity; instead, the
model demonstrated much better comprehension of higher fre-
quency words. This replicates effects seen in patients with SD
across a range of semantic tasks (Bozeat et al., 2000; Funnell,
1995; Jefferies et al., 2009). The robust semantic representations of
high frequency words were explored by Rogers and McClelland
(2004). They demonstrated that when the model encounters a word
frequently, it has many opportunities to learn the appropriate
patterns of activation for this word. As a consequence, it develops
a robust representation of the word early in the learning process.
When the representational system is later degraded by damage, the
strong representations of high frequency words are affected to a
lesser extent. Semantic diversity has little effect on performance in
the hub-damaged model because the controlled retrieval process is
unaffected. The model can therefore compensate for the weak
target activation on high semantic diversity trials, provided that it
still has a reasonably intact representation for the probe to begin
with. These results are consistent with the widely held view that
SD is a relatively pure disorder of semantic representation and that
executive control processes function well in this condition (Jeffer-
ies & Lambon Ralph, 2006).

Under both types of damage, the model displayed better com-
prehension of concrete relative to abstract words. This effect
cannot be attributed to differences in frequency, semantic diversity
or co-occurrence rates, which were all controlled for in the anal-
yses. The key difference must therefore be the association of
concrete words with S-M properties. We have suggested previ-
ously that this results in concrete words developing richer semantic
representations, explaining the more preserved comprehension of
such concepts in most SD patients (Hoffman, 2016; Hoffman &
Lambon Ralph, 2011). The meanings of concrete words also tend
to be acquired earlier in life than those of abstract words
(Stadthagen-Gonzalez & Davis, 2006). This is true in the model.
Although the model is exposed to both concrete and abstract words
from “birth,” it develops representations for concrete words more
quickly because they are mapped consistently with their S-M
properties. This early acquisition also ensures that concrete words
have robust representations in the face of damage (Ellis & Lambon
Ralph, 2000), just as high frequency words do.

Another factor of potential importance is the presence of feed-
back connections from the model’s S-M units to the hub. As the
model begins to process a concrete word, it quickly activates a
strong, contextually invariant pattern of S-M activity. This emerg-
ing S-M representation feeds back into the hub layer, providing an
important additional source of constraint for the hub as it settles
into a coherent representation of the word (note that while abstract
words do come to activate some S-M information through acquired
embodiment, they do so in a weaker and more contextually varying
fashion). This feedback activation provides additional support for
the hub representations of concrete words, which partially amelio-
rates damage to this element of the network. Feedback from S-M
units to the hub may also have a beneficial effect when control
processes are impaired because it ensures that the network settles
into a state consistent with the S-M properties activated, and the
probe and target share some S-M properties.

Simulation 3: Taxonomic and Associative
Relationships in SD and SA

In Simulation 2, we explored how the model made semantic
judgments to concrete and abstract words under damage. In the
final simulation, we restricted our attention to concrete words and
considered how the model performed when different types of
semantic relationship were probed. There has long been an impor-
tant distinction made between taxonomic semantic relationships,
between items which share S-M properties, and associative rela-
tionships, between items which share few properties but which
co-occur in particular spatiotemporal contexts (Alario et al., 2000;
Lin & Murphy, 2001; Perea & Gotor, 1997; Seidenberg et al.,
1984). As our model codes semantic structure based on the inte-
gration of S-M and contextual information, it should be sensitive
to both types of relationship. We have already demonstrated that
our model’s unitary semantic space codes information about both
types of relationship. Here, we investigated the model’s ability to
make semantic judgments on the basis of association as well as
S-M similarity, when intact and under damage. Patients with SD
show similar levels of impairment when asked to match items
either on the basis of taxonomic similarity or association (Hoffman
et al., 2013a). SA patients also show similar levels of impairment
for both types of relationship (Jefferies & Lambon Ralph, 2006;
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Noonan et al., 2010). We tested the model’s ability to simulate
these patterns.

Target data. Data for taxonomic and associative semantic
decisions are taken from Hoffman et al. (2011b). For taxonomic
decisions, we took the most highly imageable trials from the
semantic judgment task described in Simulation 2. For associative
decisions, we investigated performance on the word version of the
Camel and Cactus Test (Bozeat et al., 2000). In this test, patients
were presented with the name of a concrete probe and asked to
decide which of four items was semantically related to it (e.g., does
camel go with cactus, rose, sunflower, or tree?). The target always
belonged to a different category to the probe. It is important to note
that the two tasks were designed independently and are not
matched on all factors that might influence performance (e.g.,
word frequency, number of alternatives). Nevertheless, they pro-
vide a benchmark for assessing relative levels of performance
across patient groups. Both SA and SD patients performed poorly
on both tasks (see Figure 16). Healthy control data for the Camel
and Cactus Test was reported by Bozeat, Lambon Ralph, Patter-
son, Garrard, and Hodges (2000) and for the semantic judgment
task by Hoffman et al. (2013b). These are also displayed in
Figure 16.

Test construction for simulation. For the taxonomic deci-
sions, we used the 22 concrete word trials from Simulation 2. For
the associative decisions, we constructed 22 new trials, each with
a target and three unrelated foils. The target had frequently oc-
curred alongside the probe during training (mean associative
strength � 0.039) but belonged to a different category and conse-
quently had different S-M properties. Foils also belonged to dif-
ferent categories to the probe.

Simulation Method: Procedures for Damaging and
Testing the Model Were Identical to Simulation 2

Results. The undamaged model was able to make both taxo-
nomic and associative decisions at over 90% accuracy (see Figure
16). This is comparable with performance in healthy individuals.
Patients with SA and SD were impaired for taxonomic and asso-
ciative judgments to a similar extent. In all groups, performance
was slightly worse for associative judgments, which may reflect
the fact that these judgments required selection from four alterna-
tives, rather than three. In any case, the model demonstrated a

similar pattern of behavior: Both types of damage had a similar
effect on both taxonomic and associative judgments, with poorer
performance on the whole for the associative decisions.

Discussion. In addition to matching concrete items that be-
longed to the same semantic category, the model was able to match
associated items that shared no S-M properties. This indicates that
the network’s single set of semantic representations simultane-
ously coded information about category structure, based on shared
S-M features and concept co-occurrence, as well as associative
relationships based on concept co-occurrence alone. Both types of
judgments were impaired to a similar extent under damage to
either the hub representations or control processes, mirroring re-
sults from SD and SA patients.

General Discussion

We have presented a connectionist model of semantic cognition
that represents a theoretical advance on several fronts. The starting
point for our model is the established view that semantic repre-
sentation arises from the convergence of multiple, modality-
specific sources of information on a central semantic “hub” (Lam-
bon Ralph et al., 2010, 2017; Patterson et al., 2007; Rogers et al.,
2004). In learning to map between the names of objects and their
sensory-motor (S-M) properties, the hub develops conceptual rep-
resentations which capture the underlying similarity structure
among the objects. We have significantly extended the theoretical
reach of this framework by allying it with the distributional prin-
ciple: the idea that semantic relationships can also be inferred from
the co-occurrence of words or objects in the same contexts (Firth,
1957; Griffiths et al., 2007; Jones & Mewhort, 2007; Landauer &
Dumais, 1997; Lund & Burgess, 1996; Sadeghi et al., 2015). Our
model was presented with sequences of concepts and was required
to predict which concepts are likely to co-occur with one another,
by making use of a recurrent architecture that buffers recent
experience (Elman, 1990). Under these twin pressures—to map
between words and S-M experiences and to predict which words
co-occur with one another—the system developed semantic rep-
resentations that coded the relationships between concepts based
on a fusion of S-M similarity and concept co-occurrence. This
proved to have a number of advantages:

Figure 16. Target data and model performance for Simulation 3.
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1. As in previous connectionist approaches to semantic rep-
resentation (e.g., Rogers et al., 2004), the model repre-
sents items with similar S-M properties as semantically
related to one another. In addition, by learning about the
contextual co-occurrence of items, the network also be-
comes sensitive to associative relationships between ob-
jects that have entirely distinct S-M properties.

2. Because of its adherence to the distributional principle,
the model is able to learn about abstract concepts, which
have few direct links to S-M experiences and have until
now been largely overlooked in computational models of
semantic cognition. Although the model is never explic-
itly trained to associate abstract words with S-M experi-
ences, it does come to link S-M information with abstract
words indirectly, by virtue of their association with con-
crete items. The model therefore provides a mechanism
by which the meanings of abstract concepts can become
partially grounded in the physical world. This addresses
a fundamental criticism that has often been levelled at
approaches based on the distributional principle: that they
lack grounding in S-M experience (Glenberg & Robert-
son, 2000).

3. The model’s representations are context-sensitive, allow-
ing for the multiple meanings of homonyms to be repre-
sented distinctly and, perhaps more significantly, for the
representations of all words to vary in a graded fashion
according to the particular context in which they are
being used. This is made possible by the model’s recur-
rent architecture, whereby network activity at any point
in time is influenced jointly by the identity of incoming
stimulus from the environment and by the network’s
buffered copy of its own internal state following process-
ing of the previous stimulus.

In addition to these advances regarding the nature of semantic
representation, the model breaks new ground by incorporating a
mechanism for executive regulation of activity in the semantic
system. Control processes are known to play an important role in
semantic cognition, by providing top-down influences which en-
sure that the activation of semantic information is appropriately
tailored to the current goal or context (Badre & Wagner, 2002;
Jefferies, 2013; Jefferies & Lambon Ralph, 2006; Thompson-
Schill et al., 1997). One such hypothesized control process is a
“controlled retrieval” mechanism that is thought to direct semantic
activation when automatic processing of the stimulus fails to
generate a suitable response. Earlier, we gave the example of the
concept of a bee, which might automatically bring to mind their
most common properties such as buzzing, flying, making honey,
and living in a hive. When completing a semantic task that requires
one to match bee with pollen, however, one has to go beyond these
dominant associations and focus on a specific context in which
bees act as pollinators of flowers.

For the first time, we have proposed and implemented a com-
putational mechanism for performing controlled retrieval. We
tested this mechanism using a standard semantic task, in which
participants are asked to decide which of a number of words is
related in meaning to a probe word. The controlled retrieval

mechanism ensures that the network’s activity is influenced by the
word whose meaning is being probed but also, simultaneously, by
the possible responses available. The network is constrained to
find an activation state that is consistent with both the probe word
and with one of the available responses. Through an iterative
feedback process, the network is able to discover which of the
response options is most compatible with the probe. In effect, the
model ends up “thinking about” the probe in a way that is com-
patible with one of the available options.

In Simulation 1, we tested this mechanism by probing the
model’s ability to select words related to the dominant and sub-
ordinate meanings of homonyms. We found that the model could
successfully complete the task, but that damage to the controlled
retrieval process resulted in deficits that mimicked those of pa-
tients with SA, who have impaired semantic control processes. In
Simulation 2, we investigated the differential effects of damaging
either the control processes or the model’s representational system,
again in a verbal comprehension task. Damage to these two ele-
ments produced qualitatively different patterns of impairment,
with respect to the effects of frequency, imageability, and semantic
diversity. These divergent profiles closely matched the effects seen
in patients with SA and SD, indicating that the model’s perfor-
mance under damage is consistent with the hypothesized causes of
semantic impairment in these two disorders. Finally, in Simulation
3 we found that damage to either control processes or representa-
tions had similar effects on judgments of taxonomic and associa-
tive semantic relationships, again mirroring results in patients with
SD and SA.

In this discussion, we will consider the contribution of our
model in developing a full neurocognitive theory of semantic
cognition. We will also note some areas that the model does not
address at present and consider how these might be addressed in
the future.

The Neural Basis of Semantic Cognition

There is now a large body of data concerning the network of
brain regions involved in semantic cognition (see, e.g., Binder,
Desai, Graves, & Conant, 2009). In this section, we consider how
our model fits with current perspectives on the organization of the
semantic neural network and note where it makes explicit predic-
tions about the function of this network.

Our model uses a hub-and-spoke architecture (Lambon Ralph et
al., 2010; 2017; Patterson et al., 2007; Rogers et al., 2004), which
proposes that a distributed network of specialized regions (termed
spokes) represents properties in particular sensory, motor and
linguistic modalities, while the hub develops pan-modal, general-
izable conceptual representations by virtue of its intermediary role
(for related views, see Damasio, 1989; Garagnani & Pulvermüller,
2016; Simmons & Barsalou, 2003). As our focus was on central
semantic representation, we did not attempt to represent the spoke
regions in any detail in the model. We represented S-M properties
using simple patterns over a single set of units; but in practice we
believe that this information is coded across a range of specialized
sites (see Binder & Desai, 2011; Rice, Hoffman, & Lambon Ralph,
2015). Verbal information was represented by verbal input units
and prediction units, which we propose are supported by perisyl-
vian language regions in the superior temporal cortex. We have not
attempted to specify the function of these regions in any detail;
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undoubtedly there is a great deal of acoustic and phonological
processing that is beyond the scope of our model. Other recent
connectionist models have, however, sought to specify the func-
tions of various spoke regions in a neuroanatomically constrained
fashion (Chen, Lambon Ralph, & Rogers, 2017; Ueno, Saito,
Rogers, & Lambon Ralph, 2011).

In the present work, we have focused on the structure and
function of the central hub. In recent years, the ATL has emerged
as the most likely neuroanatomical region underpinning this func-
tion. Converging evidence for the importance of this region comes
from studies observing functional activation using PET and fMRI
(Humphreys et al., 2015; Spitsyna, Warren, Scott, Turkheimer, &
Wise, 2006; Vandenberghe, Nobre, & Price, 2002), damage to this
area in SD patients (Butler et al., 2009; Mion et al., 2010),
transcranial magnetic stimulation (Pobric et al., 2007), MEG
(Marinkovic et al., 2003) and intracranial electrode recording
(Nobre, Allison, & McCarthy, 1994; Shimotake et al., 2015). In all
cases, the ATL, and in particular its ventral surface, has been
associated with the representation of multimodal semantic knowl-
edge, in line with the proposed hub function (Lambon Ralph et al.,
2017). On this view, damage to this central, pan-modal element of
the semantic system gives rise to the severe, multimodal semantic
deficits observed in SD patients (Rogers et al., 2004). To simulate
SD in our model, like Rogers et al. (2004), we damaged the hub
units. We found that the model’s verbal comprehension perfor-
mance under these conditions closely mimicked the pattern seen in
SD. This supports the view that the ATL functions as an integra-
tive representational hub, developing conceptual representations
based on inputs from multiple verbal and nonverbal modalities.

The ventral parietal cortex (VPC) is also frequently implicated
in semantic cognition though its function is less clear. Some
authors have suggested that it plays a representational role similar
to that of ATL. Specifically, it is claimed that semantic represen-
tation requires two distinct hubs (Binder & Desai, 2011; Mirman
& Graziano, 2012; Schwartz et al., 2011). One, linked with the
ATL, is thought to represent relationships between objects based
on similarity in their S-M properties. A second system, supported
by VPC, is thought to represent thematic or associative relations
between items through sensitivity to spatiotemporal co-occurrence.
Evidence for this view includes different semantic error patterns in
patients with ATL versus VPC lesions (Schwartz et al., 2011) and
activation of VPC during “combinatorial” semantic tasks that
involve extraction of a global meaning from a series of words.
These include comprehension of sentences (Friederici, Meyer, &
von Cramon, 2000; Humphries, Binder, Medler, & Liebenthal,
2006; Vandenberghe et al., 2002) and determining the conjoint
meaning of two-word phrases such as “loud car” (Graves, Binder,
Desai, Conant, & Seidenberg, 2010; Price, Bonner, Peelle, &
Grossman, 2015). However, while there is clear evidence for VPC
involvement in sentence-level processing, this area frequently de-
activates during single-word semantic processing (Humphreys et
al., 2015; Humphreys & Lambon Ralph, 2014). This suggests that
its function is distinct from that of ATL, which shows robust
activation for single-word as well as sentence-level semantics. An
alternative view holds that VPC acts as a short-term information
buffer, maintaining aspects of recent experience that may be rel-
evant to ongoing processing (Humphreys & Lambon Ralph, 2014;
Jonides et al., 1998; Lerner, Honey, Silbert, & Hasson, 2011;
Vilberg & Rugg, 2008; Wagner, Shannon, Kahn, & Buckner,

2005). On this view, VPC is important for semantic processing not
because it is a long-term knowledge store but because it stores
temporary information about recent context, which is important for
comprehension beyond the level of single words.

Our model suggests a potential way to reconcile these different
views. The implemented model is most consistent with the short-
term buffer view of VPC function, in that the context layer acts a
passive buffer that retains the previous state of the hub. This
element of the model is critical for the context-dependent process-
ing (e.g., the effects of cues in Simulation 1) but not for the
processing of single words out of context (e.g., Simulations 2 and
3, where the activity on this layer is randomized prior to every
trial).

However, one could envisage a more complex mode in which
the context layer is not simply a passive store but instead plays a
more direct role in mapping between words, S-M properties and
predictions. Crucially, in order to maintain sensitivity to prior
context, this layer would need to integrate inputs over a slower
timescale than the ATL hub.3 In this hypothetical model, the
context units would acquire representations of meaning, but they
would be sensitive to spatiotemporal statistics over a longer time-
scale than those captured by the ATL hub. As a consequence, it is
likely that they would play a disproportionate role in coding the
semantics of temporally extended events, as envisaged by the idea
of a hub for event knowledge (Binder & Desai, 2011; Mirman &
Graziano, 2012; Schwartz et al., 2011). This potential account of
VPC function is appealing for two other reasons. First, functional
neuroimaging studies indicate that VPC does respond strongly to
temporally extended streams of meaningful information (e.g., sto-
ries and movies) and, crucially, integrates information over a
longer time scale than earlier sensory processing regions (Hasson,
Yang, Vallines, Heeger, & Rubin, 2008; Lerner et al., 2011; Tylén
et al., 2015). Second, if this role is assumed to extend beyond the
semantic domain, then it provides a parsimonious explanation for
VPC involvement in other types of processing, such as episodic
memory for events and syntactic and arithmetical processing, all of
which require sensitivity to the structure of temporally extended
sequences (Humphreys & Lambon Ralph, 2014).

The final element of the model is the control processes that are
necessary for the model to select from multiple response options in
forced-choice tasks. Semantic control has been associated with a
network of regions that include inferior frontal gyrus (IFG), pos-
terior middle temporal gyrus, and the intraparietal sulcus, although
most attention has been focused on the left IFG, which displays the
most robust activation in functional neuroimaging studies (Badre
et al., 2005; Bedny et al., 2008; Noonan et al., 2013; Rodd et al.,
2005; Thompson-Schill et al., 1997; Whitney et al., 2011a, 2011b;
Zempleni et al., 2007). Within the IFG, a division of labor has been
proposed, whereby the most anterior portion (pars orbitalis, also
known as Brodmann Area 47) is specialized for cognitive control
during semantic processing while the posterior section (pars trian-
gularis and opercularis or BA 44/45) has a domain-general role in
response selection, which extends beyond semantics to other lin-
guistic and nonlinguistic domains (Badre et al., 2005; Gold et al.,
2006). This is supported by the structural connectivity of the
region. BA47 has direct connections with the ATL hub region via

3 We are grateful to David Plaut for this suggestion.
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the uncinate fasciculus while BA 44/45 demonstrates a broader
pattern of connectivity with temporal and parietal regions (Binney,
Parker, & Lambon Ralph, 2012). Badre and colleagues have pro-
posed that these regions perform distinct roles in semantic control
(Badre et al., 2005; Badre & Wagner, 2002, 2007). BA47 is
thought to regulate activity in the semantic system through top-
down controlled retrieval. In contrast, BA 44/45 is thought to be
responsible for resolving competition between possible responses
postretrieval. While the second process might govern behavior in
a range of cognitive domains, the first appears to be more specific
to semantic processing.

Our model makes specific predictions about the role of BA47
during semantic processing. If this region is responsible for con-
trolled retrieval, we would expect it to be exhibit functional con-
nectivity with the ATL during semantic tasks, reflecting its top-
down influence on the activation of hub representations.
Furthermore, this connectivity should be strongest when partici-
pants are required to activate nondominant or weak aspects of
semantic knowledge. It is also important to note that we imple-
mented semantic control as a two-stage process. We focused
mainly on implementing a mechanism for controlled retrieval but
we also included a stochastic response selection stage. To simulate
SA, we disrupted both elements because the lesions that give rise
to this condition typically encroach on both the anterior and
posterior parts of IFG (Hoffman et al., 2010; Noonan et al., 2010).
However, the model predicts that multiple, neuroanatomically
distinct processes contribute to semantic control and this predic-
tion could be tested by using TMS to disrupt the function of
anterior versus posterior IFG. Finally, we note that some patients
show impaired ability in controlled retrieval (i.e., poor ability to
match weakly related concepts), despite having no damage to IFG
(Noonan et al., 2010; Thompson, 2012). The deficit in these cases
appears to arise from damage to the posterior components of the
semantic control network. The function of these regions is poorly
understood and is an important target for future investigations.

Future Directions

In this final section, we discuss aspects of semantic processing
that the model does not address at present and consider how these
might be captured under our approach. One important aspect of
language processing not currently addressed is the acquisition of
syntax. Our model is presented with sequences of co-occurring
nouns but has no exposure to other parts of speech, or indeed to
event structure or other aspects of sentence processing. It is im-
portant to note this characteristic is shared with many of the
existing models from the two modeling traditions that inspired the
current project. Computational models of object semantics typi-
cally focus exclusively on the representations of individual object
concepts (e.g., Chen et al., 2017; Devlin, Gonnerman, Andersen, &
Seidenberg, 1998; Dilkina et al., 2008; Farah & McClelland, 1991;
Plaut, 2002; Rogers et al., 2004; Schapiro et al., 2013; Tyler et al.,
2000). Likewise, statistical models based on the distributional
principle have often taken a “bag of words” approach that takes
into account the propensity for words to occur in proximity to one
another but disregards the order in which they occur (though some
models have taken word order into account; Griffiths, Steyvers,
Blei, & Tenenbaum, 2004; Jones & Mewhort, 2007). Taking our
cue from these approaches, we restricted the model to processing

noun sequences. This approach has been sufficient to provide a
good fit to our target neuropsychological data, which concerned
comprehension of individual words rather than sentences. Clearly,
however, it is a gross oversimplification of language use in the real
world. Many of the relationships between concepts are structured
in terms of the roles they play in events, and these can be inferred
from syntactic structure but not from mere co-occurrence. For
example, mugs and glasses share many properties and this allows
them to play similar roles in drink-making event sequences, to the
extent that one can usually be substituted for the other. Mugs and
coffee, on the other hand, frequently co-occur in the same context
but they play different roles and, relatedly, have very different
properties. Our model’s failure to take this information into ac-
count could result in “illusory feature migrations,” whereby prop-
erties of mugs are incorrectly generalized to coffee simply because
they occur in the same contexts (Jones & Recchia, 2010). Similar
constraints apply to the understanding of abstract words. For
example, the words journey and distance have distinct meanings,
despite frequently occurring in similar contexts, because they play
different roles in the contexts in which they are used (one can
measure the distance of a journey, but not the journey of a
distance).

That said, there is no reason in principle why our model could
not acquire representations that incorporate syntactic and role-
based information, if trained with an appropriately structured cor-
pus. Recurrent architectures of the kind we have used to represent
context have been applied extensively to the study of sentence
comprehension (Elman, 1990; St. John & McClelland, 1990). Such
models readily acquire syntactic knowledge through sensitivity to
statistical regularities in temporal structure. For example, a simple
recurrent network presented with sentences will learn rapidly that
verbs are typically followed by nouns and will represent these two
classes as highly distinct from one another (Elman, 1990). We
therefore see the present work as an important advance toward a
model that extracts semantic information from full sentences while
simultaneously binding this sequential statistical information with
S-M experience.

A second simplification in the model concerns the representa-
tional basis of abstract words. We have adopted the most clearly
articulated position in the literature: that knowledge of concrete
and abstract words can inferred through their use in language, but
only concrete words are directly associated with aspects of non-
verbal S-M experience (Barsalou et al., 2008; Paivio, 1986). In
addition, recent studies have indicated that the abstract-concrete
continuum contains multiple underpinning distinctions and dimen-
sions (Leshinskaya & Caramazza, 2016; Vigliocco et al., 2014).
These include the fact that a set of abstract words are more
strongly associated with emotional arousal than concrete words
(Kousta et al., 2011; Vigliocco et al., 2014). Thus, it is likely that
the representations of some abstract words are shaped not only by
their linguistic use but by their association with particular emo-
tional states, just as concrete words are associated with particular
S-M experiences. Another subset of abstract words appears to be
linked closely with representations of spatial and temporal mag-
nitude (Troche, Crutch, & Reilly, 2014). These other potential
influences on abstract word comprehension are not included in our
model. However, the hub-and-spoke framework could potentially
accommodate such influences by assuming that spoke regions that
code emotional states and representations of magnitude also influ-
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ence the development of conceptual representations in the hub
(Binney, Hoffman, & Lambon Ralph, 2016; Rice et al., 2015).
Indeed, the ATL hub region has direct structural connections with
parts of the limbic system involved in emotion processing (Binney
et al., 2012; Von Der Heide, Skipper, Klobusicky, & Olson, 2013).
The effects of such additional sources of information on the
organization of the semantic space is an interesting question that
awaits investigation.

We also note that our model was not intended to test specific
predictions about the timing of semantic processes. Although the
cognitive neuroscience of semantic cognition has tended to focus
on its spatial distribution throughout the brain, EEG and MEG
studies provide complementary information on the timing of con-
tributions from different regions. These suggest that ATL hub
regions become activated as early as 200-ms postonset in lexical-
semantic tasks (Chen, Davis, Pulvermüller, & Hauk, 2015; Hauk,
2016; Marinkovic et al., 2003), which is consistent with the cen-
tral, intermediary role played by the hub in the model. Other
studies suggest that the processing of words engages distributed
linguistic information more rapidly than it does S-M representation
(Barsalou et al., 2008). Although our model does not make specific
predictions about timing, we believe that connectionist approaches
more generally are well-suited to addressing these challenges,
particularly those that have adopted neurally plausible activation
dynamics (Blouw et al., 2015; Laszlo & Plaut, 2012).

Finally, we note that our treatment of semantic control has
focused on one particular aspect, controlled retrieval. This is a
critical ability because it allows individuals to identify connections
between concepts which may initially appear unrelated. We tested
this ability in a task which participants were asked to identify weak
semantic relationships from various presented alternatives. But
what value does such a process have in the real world, in which the
alternatives are not so neatly presented? Our view is that when we
encounter ambiguous stimuli, there are often multiple cues avail-
able, either in the environment or retrieved from our existing
knowledge, that could potentially disambiguate the stimulus. Con-
trolled retrieval is useful in finding the appropriate cue to aid our
understanding. Imagine, for example, that you come across a
friend in a supermarket while he is in the middle of a conversation
with another acquaintance. You hear your friend say “I’m worried
about its bark.” How do you make sense of this statement, without
having heard the rest of the conversation? One possibility is that
relevant constraining information is available among the items in
your friend’s shopping basket. The presence of dog food could
direct the semantic system toward one interpretation of bark, while
the presence of weed killer would push the system toward a
different interpretation. In other cases, the disambiguating infor-
mation might be retrieved from memory. For example, if one of
the salient facts you know about your friend is that they own a dog,
this could serve as the additional information that drives the
semantic system toward the relevant part of semantic space. In
both of these examples, the disambiguating cues must be selected
from a wide range of potentially relevant information. This, we
believe, is the value of controlled retrieval in everyday life: for
identifying which pieces of information cohere with one another,
thus helping us to make sense of a complex world.

This mechanism may also be useful in the processing of meta-
phors and analogies. Although analogical reasoning was not a
specific target of our model, a recent connectionist model has

accounted for impairment in this domain in prefrontal and anterior
temporal patients, using similar basic principles (Kollias & Mc-
Clelland, 2013). In Kollias and McClelland’s (2013) model, com-
pletion of verbal analogy problems (e.g., Puppy is to dog as kitten
is to what?) hinged on the ability of the network to process all of
the elements of the problem simultaneously. Prefrontal damage in
the model was simulated by preventing the network from consid-
ering all parts of the problem together, much as the removal of
controlled retrieval in our model prevented the semantic hub from
being influenced by all possible response options. More generally,
comprehension of novel metaphors (e.g., the classroom was a zoo)
requires people to identify which aspect of meaning from the
metaphor’s source can be cogently applied to the target. This
constrained search for a shared aspect of meaning is precisely the
function of the controlled retrieval mechanism. Thus, while a
detailed consideration of metaphor is beyond the scope of the
current model, the approach to semantic control we have outlined
may have some utility in this domain.

Although controlled retrieval is an important tool in many
situations, we also believe that other control processes make im-
portant contributions to semantic cognition. Many tasks require
inhibition of prepotent associations to direct attention to specific
aspects of meaning. As discussed earlier, these goal-driven biases
may be achieved through the influence of representations of task
set on activity in the semantic system (e.g., Dilkina et al., 2008;
Plaut, 2002). We have also not attempted to specify in detail the
processes involved in response selection, which is a particular
source of difficulty for patients with SA. The degree to which these
different elements of semantic control rely on unitary versus
diverse neural substrates is unclear at the present time. Only by
investigating the underlying mechanisms will we be able to de-
velop a unified theory of semantic cognition that addresses not
only the representation of semantic knowledge but also its appro-
priate use.
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