38 research outputs found

    Cell Death Pathways in Directly Irradiated Cells and Cells Exposed to Medium from Irradiated Cells

    Get PDF
    Purpose: The aim of this study was to compare levels of apoptosis, necrosis, mitotic cell death and senescence after treatment with both direct radiation and irradiated cell conditioned medium. Materials and methods: Human keratinocytes (HaCaT cell line) were irradiated (0.005, 0.05 and 0.5 Gy) using a cobalt 60 teletherapy unit. For bystander experiments, the medium was harvested from donor HaCaT cells one hour after irradiation and transferred to recipient HaCaT cells. Clonogenic assay, apoptosis, necrosis, mitotic cell death, senescence and cell cycle analysis were measured in both directly irradiated cells and bystander cells Results: A reduction in cell survival was observed for both directly irradiated cells and irradiated cell conditioned medium (ICCM) treated cells. Early apoptosis and necrosis was observed predominantly after direct irradiation. An increase in the number of cells in G2/M phase was observed at 6 and 12 hours which led to mitotic cell death after 72 hours following direct irradiation and ICCM treatment. No senescence was observed in the HaCaT cell line following either direct irradiation or treatment with ICCM. Conclusion: This study has shown that directly irradiated cells undergo apoptosis, necrosis and mitotic cell death whereas ICCM treated cells predominantly undergo mitotic cell deat

    Reactive Oxygen Species and Nitric Oxide Signaling in Bystander Cells

    Get PDF
    It is now well accepted that radiation induced bystander effects can occur in cells exposed to media from irradiated cells. The aim of this study was to follow the bystander cells in real time following addition of media from irradiated cells and to determine the effect of inhibiting these signals. A human keratinocyte cell line, HaCaT cells, was irradiated (0.005, 0.05 and 0.5 Gy) with γ irradiation, conditioned medium was harvested after one hour and added to recipient bystander cells. Reactive oxygen species, nitric oxide, Glutathione levels, caspase activation, cytotoxicity and cell viability was measured after the addition of irradiated cell conditioned media to bystander cells. Reactive oxygen species and nitric oxide levels in bystander cells treated with 0.5Gy ICCM were analysed in real time using time lapse fluorescence microscopy. The levels of reactive oxygen species were also measured in real time after the addition of extracellular signal-regulated kinase and c-Jun amino-terminal kinase pathway inhibitors. ROS and glutathione levels were observed to increase after the addition of irradiated cell conditioned media (0.005, 0.05 and 0.5 Gy ICCM). Caspase activation was found to increase 4 hours after irradiated cell conditioned media treatment (0.005, 0.05 and 0.5 Gy ICCM) and this increase was observed up to 8 hours and there after a reduction in caspase activation was observed. A decrease in cell viability was observed but no major change in cytotoxicity was found in HaCaT cells after treatment with irradiated cell conditioned media (0.005, 0.05 and 0.5 Gy ICCM). This study involved the identification of key signaling molecules such as reactive oxygen species, nitric oxide, glutathione and caspases generated in bystander cells. These results suggest a clear connection between reactive oxygen species and cell survival pathways with persistent production of reactive oxygen species and nitric oxide in bystander cells following exposure to irradiated cell conditioned media

    DNA Damage and Cytokine Production in Non-Target Irradiated Lymphocytes

    Get PDF
    In advanced radiotherapy, treatment of the tumor with high-intensity modulated fields is balanced with normal tissue sparing. However, the non-target dose delivered to surrounding healthy tissue within the irradiated volume is a potential cause for concern. Whether the effects observed are caused after exposure to out-of-field radiation or bystander effects through neighboring irradiated cells is not fully understood. The goal of this study was to determine the effect of exposure to out-of-field radiation in lymphocyte cell lines and primary blood cells. The role of cellular radiosensitivity in altering bystander responses in out-of-field exposed cells was also investigated. Target cells were positioned in a phantom in the center of the radiation field (in-field dose) and exposed to 2 Gy irradiation. Lymphocyte cell lines (C1, AT3ABR, Jurkat, THP-1, AT2Bi and AT3Bi) and peripheral blood were placed 1 cm away from the radiation field edge (out-offield dose) and received an average dose of 10.8 6 4.2 cGy. Double-stranded DNA damage, cell growth and gene expression were measured in the out-of-field cells. Radiosensitive AT3ABR and primary blood cells demonstrated the largest increase in c-H2AX foci after irradiation. Exposure of normal cells to bystander factors from irradiated radiosensitive cell lines also increased DNA damage. Expression of IL-1, IL-6, TNFa and TGFb after addition of bystander factors from radiosensitive cells showed differential effects in normally responding cells, with some evidence of an adaptive response observed. Exposure to out-of-field radiation induces DNA damage and reduces growth in radiosensitive cells. Bystander factors produced by directly irradiated cells in combination with out-of-field exposure may upregulate pro- and anti-inflammatory genes in responding cells of different radiosensitivities, with the potential of affecting the tumor microenvironment. A greater understanding of the radiobiological response in normal cells outside the primary treatment field would assist in radiation treatment planning and in reducing early and late toxicities

    Altered mitochondrial function and genome frequency post exposure to γ-radiation and bystander factors

    Get PDF
    PURPOSE: To further evaluate irregular mitochondrial function and mitochondrial genome damage induced by direct γ-irradiation and bystander factors in human keratinocyte (HPV-G) epithelial cells and hamster ovarian fibroblast (CHO-K1) cells. This is as a follow-up to our recent reports of γ-irradiation-induced loss of mitochondrial function and mitochondrial DNA (mtDNA) damage

    MicroRNA Analysis of ATM-Deficient Cells Indicate PTEN and CCDN1 as Potential Biomarkers of Radiation Response

    Get PDF
    Genetic and epigenetic profile changes associated with individual radiation sensitivity are well documented and have led to enhanced understanding of the mechanisms of the radiation-induced DNA damage response. However, the search continues to identify reliable biomarkers of individual radiation sensitivity. Herein, we report on a multi-biomarker approach using traditional cytogenetic biomarkers, DNA damage biomarkers and transcriptional microRNA (miR) biomarkers coupled with their potential gene targets to identify radiosensitivity in ataxia-telangiectasia mutated (ATM)-deficient lymphoblastoid cell lines (LCL); ATM-proficient cell lines were used as controls. Cells were 0.05 and 0.5 Gy irradiated, using a linear accelerator, with sham-irradiated cells as controls. At 1 h postirradiation, cells were fixed for γ-H2AX analysis as a measurement of DNA damage, and cytogenetic analysis using the G2 chromosomal sensitivity assay, G-banding and FISH techniques. RNA was also isolated for genetic profiling by microRNA (miR) and RT-PCR analysis. A panel of 752 miR were analyzed, and potential target genes, phosphatase and tensin homolog (PTEN) and cyclin D1 (CCND1), were measured. The cytogenetic assays revealed that although the control cell line had functional cell cycle checkpoints, the radiosensitivity of the control and AT cell lines were similar. Analysis of DNA damage in all cell lines, including an additional control cell line, showed elevated γ-H2AX levels for only one AT cell line. Of the 752 miR analyzed, eight miR were upregulated, and six miR were downregulated in the AT cells compared to the control. Upregulated miR-152-3p, miR-24-5p and miR-92-15p and all downregulated miR were indicated as modulators of PTEN and CCDN1. Further measurement of both genes validated their potential role as radiation-response biomarkers. The multi-biomarker approach not only revealed potential candidates for radiation response, but provided additional mechanistic insights into the response in AT-deficient cells

    Application of Advanced Non-Linear Spectral Decomposition and Regression Methods for Spectroscopic Analysis of Targeted and Non-Targeted Irradiation Effects in an In-Vitro Model

    Get PDF
    Irradiation of the tumour site during treatment for cancer with external-beam ionising radiation results in a complex and dynamic series of effects in both the tumour itself and the normal tissue which surrounds it. The development of a spectral model of the effect of each exposure and interaction mode between these tissues would enable label free assessment of the effect of radiotherapeutic treatment in practice. In this study Fourier transform Infrared microspectroscopic imaging was employed to analyse an in-vitro model of radiotherapeutic treatment for prostate cancer, in which a normal cell line (PNT1A) was exposed to low-dose X-ray radiation from the scattered treatment beam, and also to irradiated cell culture medium (ICCM) from a cancer cell line exposed to a treatment relevant dose (2 Gy). Various exposure modes were studied and reference was made to previously acquired data on cellular survival and DNA double strand break damage. Spectral analysis with manifold methods, linear spectral fitting, non-linear classification and non-linear regression approaches were found to accurately segregate spectra on irradiation type and provide a comprehensive set of spectral markers which differentiate on irradiation mode and cell fate. The study demonstrates that high dose irradiation, low-dose scatter irradiation and radiation-induced bystander exposure (RIBE) signalling each produce differential effects on the cell which are observable through spectroscopic analysis

    Raman Spectroscopy of Lymphocytes for the Identification of Prostate Cancer Patients with Late Radiation Toxicity Following Radiotherapy

    Get PDF
    The success of radiotherapy in tumour control depends on the total dose given. However, the tolerance of the normal tissues surrounding the tumour limits this dose. It is not known why some patients develop radiation toxicity and, currently, it is not possible to predict before treatment which patients will experience adverse effects. Thus, there is an unmet clinical need for a new test to identify patients at risk of radiation toxicity. Here, we report a new approach based on Raman spectroscopy.Blood samples were collected from 42 patients who had undergone radiotherapy for prostate cancer and had shown either severe or no/minimal late radiation toxicity in follow up. Radiation response was assessed following in vitro irradiation using Raman spectroscopy in addition to the G2 chromosomal radiosensitivity assay and the H2AX DNA damage assay.A Partial Least Squares Discriminant Analysis model was developed to classify patients using known radiation toxicity scores. A sensitivity of 95%, specificity of 92% and overall accuracy of 93% was achieved. In the future, this technology may have potential to lead to individualised patient radiotherapy by identifying which patients are at risk of radiation toxicity

    Prediction of DNA Damage and G2 Chromosomal Radio-Sensitivity Ex-vivo in Peripheral Blood Mononuclear Cells with Label-Free Raman Microspectroscopy

    Get PDF
    Liquid biopsies are a potentially rich store of biochemical information that can be linked to an individual’s response to therapeutic treatments, including radiotherapy, and which may ultimately play a role in the individualization of treatment regimens. Peripheral blood mononuclear cells (PBMCs) can be used for the biochemical profiling of the individual, but also, being living cells, can provide insights into the individuals response to ionizing radiation exposure

    OpenFermion: The Electronic Structure Package for Quantum Computers

    Get PDF
    Quantum simulation of chemistry and materials is predicted to be an important application for both near-term and fault-tolerant quantum devices. However, at present, developing and studying algorithms for these problems can be difficult due to the prohibitive amount of domain knowledge required in both the area of chemistry and quantum algorithms. To help bridge this gap and open the field to more researchers, we have developed the OpenFermion software package (www.openfermion.org). OpenFermion is an open-source software library written largely in Python under an Apache 2.0 license, aimed at enabling the simulation of fermionic models and quantum chemistry problems on quantum hardware. Beginning with an interface to common electronic structure packages, it simplifies the translation between a molecular specification and a quantum circuit for solving or studying the electronic structure problem on a quantum computer, minimizing the amount of domain expertise required to enter the field. The package is designed to be extensible and robust, maintaining high software standards in documentation and testing. This release paper outlines the key motivations behind design choices in OpenFermion and discusses some basic OpenFermion functionality which we believe will aid the community in the development of better quantum algorithms and tools for this exciting area of research.Comment: 22 page
    corecore