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ORIGINAL ARTICLE

Prediction of DNA damage and G2 chromosomal radio-sensitivity ex vivo in
peripheral blood mononuclear cells with label-free Raman micro-spectroscopy

Aidan D. Meadea,b, Adrian Maguirea,b, Jane Bryantb, Daniel Cullenb,c, Dinesh Medipallyb,c, Lisa Whiteb,c,
Brendan McCleand, Laura Shieldsd, John Armstronge,f, Mary Dunnee, Emma Noonee, Shirley Bradshawe,
Marie Finne, Aoife M. Shannonf, Orla Howeb,c and Fiona M. Lynga,b

aSchool of Physics, Dublin Institute of Technology, Dublin, Ireland; bDIT Centre for Radiation and Environmental Science, Focas Research
Institute, Dublin Institute of Technology, Dublin, Ireland; cSchool of Biological Sciences, Dublin Institute of Technology, Dublin, Ireland;
dDepartment of Medical Physics, Saint Luke's Radiation Oncology Network, St Luke's Hospital, Dublin, Ireland; eDepartment of Radiation
Oncology, Saint Luke's Radiation Oncology Network, St Luke's Hospital, Dublin, Ireland; fCancer Trials Ireland, Dublin, Ireland

ABSTRACT
Purpose: Liquid biopsies are a potentially rich store of biochemical information that can be linked to
an individual’s response to therapeutic treatments, including radiotherapy, and which may ultimately
play a role in the individualization of treatment regimens. Peripheral blood mononuclear cells (PBMCs)
can be used not only for the biochemical profiling of the individual, but also, being living cells, can
provide insights into the individuals response to ionizing radiation exposure.
Materials and methods: The present study attempts to link the biochemical profile of lymphocytes
within PBMCs obtained through Raman spectroscopy to in vitro measures of low-dose (<0.5Gy) DNA
damage response and cytogenetic metrics of radiosensitivity in a cohort of healthy controls and pros-
tate cancer patients (from CTRIAL-IE(ICORG) 08-17, NCT00951535). All parallel metrics to the Raman
spectra of the cells were obtained ex vivo in cycling peripheral blood lymphocytes, with radiosensitivity
estimated using the G2 chromosomal assay and DNA damage assessed using cH2AX fluorescence.
Spectra from a total of 26 healthy volunteers and 22 prostate cancer patients were obtained.
Results: The links between both measures of cellular response to ionizing radiation and the Raman
spectra were modeled using partial least squares regression (PLSR) and support-vector regression
(SVR). It was found that neither regression approach could predict radiation-induced G2 score well, but
could predict cH2AX MFI with the SVR outperforming PLSR, implying a non-linear relationship between
spectral measurements and measures of DNA damage.
Conclusions: Raman spectroscopy of PBMCs represents a label-free approach for prediction of DNA
damage levels for either prospective or retrospective analysis.
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1. Introduction

Individualization of therapeutic strategy for radiotherapy
patients remains a goal of clinical predictive testing prior to
treatment regimes. This response is dependent largely on
various innate genetic, epigenetic and lifestyle characteristics
that have yet to be fully characterized. Studies of inherited
conditions leading to extreme radiosensitivity, such as Ataxia
Telangiectasia (AT), Nijmegen Breakage Syndrome (NBS1) and
Fanconi’s Anemia (FA) (Moses 2001) have led to an under-
standing of the genetic signals which are involved in the
response to ionizing radiation exposure, and in all mamma-
lian cells (Thompson 2012). One of the key drivers of radio-
sensitivity is that genetic mediators of the DNA damage
response (DDR) such as ATM in AT, NBS1 (from MRN com-
plex) in NBS, BRCA2 in Fanconi’s, are mutated and cause a
disruption in the DDR leading to these clinical genetic condi-
tions (Zhou and Elledge 2000; Jackson and Bartek 2009).
However, a distribution in intrinsic radiosensitivity exists in

humans, which the general population follows a Gaussian
distribution, encompassing radioresistant, normal and radio-
sensitive individuals (Coles et al. 2005a,b). Although the
molecular mechanisms in radiobiological response are rela-
tively well characterized, identification of individuals at risk of
adverse therapeutic response remains a challenge requiring
the integration of genomic analyses with other functional
assays (Herskind et al. 2016). In the present study, the poten-
tial for Raman spectroscopy to measure DNA damage and
intrinsic radiosensitivity ex vivo using peripheral blood mono-
nuclear cells (PBMCs) is examined.

Raman spectroscopy is well characterized as a method-
ology allowing the objective classification of cancerous tissue
pathology (Kallaway et al. 2013; Kong et al. 2015), and even
the identification of pre-cancerous staging (Ramos et al.
2016). It has the advantage of not requiring any additional
biochemical labeling, and being applicable to solid and liquid
biopsies (Medipally et al. 2017), and even in vivo (Horsnell
et al. 2016). In addition the use of this analytical technique
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for the monitoring and characterization of radiobiological
responses is an important step in developing its applications
within the therapeutic sphere. Early studies here demon-
strated the ability to discriminate irradiated cells from con-
trols at high (>2Gy) doses (Matthews et al. 2011). More
recent studies have confirmed the potential of Raman spec-
troscopy, and Fourier Transform Infrared spectroscopy, to dis-
criminate dose-dependent responses to both targeted and
non-targeted radiation damage at doses as low as 5mGy
(Meade et al. 2010, 2016), and importantly to allow the dis-
crimination of radiobiological effects at low doses (<0.5Gy)
in PBMCs (Maguire et al. 2015). In this latter study, it was
suggested that spectral signatures which correlate with DNA
damage levels, as measured using cH2AX fluorescence inten-
sity are present in Raman spectra of PBMCs (Maguire et al.
2015). As cH2AX phosphorylation occurs after the sensing of
DNA double-strand breaks (DSB) by the ataxia telangiectasia
mutated gene (ATM) in the DNA Damage Response, the
cH2AX assay has been widely used as an assay for the meas-
urement of DSB sensing and repair (Bhogal et al. 2010;
Redon et al. 2010). However, while the assay is a good meas-
ure of both DNA damage and damage sensing of DSBs, its
use in dosimetry and assessment of individual radiosensitivity
has been hindered by the large variation in individual base-
line levels of H2AX phosphorylation (Horn et al. 2011, 2013;
Greve et al. 2012).

Since the cH2AX assay measures the levels of sensed DNA
damage post-ionizing radiation exposure it is related to the
function of the ATM gene and as such has some relationship
to intrinsic radiosensitivity. The G2 chromosomal assay is an
in vitro predictive assay of patient intrinsic radiosensitivity
that produces radiation-induced de novo chromatid aberra-
tions in lymphocytes in the G2 phase of the cell cycle before
entering mitosis (Howe et al. 2005). The assay is a reliable
predictor of radiosensitivity and correlates well with cancer
predisposition (Baria et al. 2001). Increased aberration yields
have been confirmed in a wide range of cancer types relative
to control cohorts including head and neck cancer (Papworth
et al. 2001), retinoblastoma (Sanford et al. 1996), melanoma
(Andersson et al. 1999), and breast cancer (Parshad et al.
1996; Roberts et al. 1999; Riches et al. 2001; Baeyens et al.
2002; Yoon et al. 2002; Scott et al. 2003; Vral et al. 2004;
Ernestos et al. 2010). Similarly the assay displays higher aber-
ration yields in groups suffering from syndromes exhibiting
radiosensitivity including Bloom’s Syndrome, Fanconi’s
Anaemia (Parshad et al. 1983; Sanford et al. 1989) and Ataxia
Telangiectasia (Scott et al. 1994). Although the assay demon-
strates good levels of reproducibility between operators and
laboratories (Sanford et al. 1989; Bryant et al. 2002) it
requires three to five days to complete.

In this study, Raman spectroscopy was performed on the
lymphocyte component of PBMCs extracted from a group of
prostate cancer patients and healthy control volunteers. In
parallel, measurements of cH2AX DSB foci and chromosomal
aberrations using the G2 chromosomal assay were performed
1-hour after in vitro irradiation. Partial least squares regres-
sion and support vector regression of spectra onto both the
radiation-induced G2 radiosensitivity scores (riG2) and cH2AX
mean fluorescence intensity (MFI) were performed to

determine whether robust spectral signatures of DNA dam-
age and intrinsic radiosensitivity exist within Raman spectra.

2. Methods

2.1. Cohort characteristics and ethical approval

The objective of the present study is to elucidate whether
Raman spectroscopy can be used as a valid alternative to
metaphase spreads or staining protocols for the measure-
ment of DNA damage and/or radiosensitivity. Therefore, the
control cohort (non-age matched) and patient cohort are
structured here to provide a wide range of radiosensitivities
to justify the conclusions of the work.

Ethical approval was awarded by the Dublin Institute of
Technology Ethics Committee (2012) for the collection of
PBMCs from blood donations from a total of 26 volunteers
(with an age range from 21 to 26) for this study. Volunteers
were from both the sexes and comprised both smokers and
non-smokers.

Ethical approval was separately awarded by the Dublin
Institute of Technology Ethics Committee (2012) for the col-
lection of blood donations from prostate cancer patients
from St. Luke’s Hospital, St. James’s Hospital, Beacon Hospital
and Beaumont Hospital (all in Dublin) for the purposes of the
study. The study was also approved by Cancer Trials Ireland
(formerly the All-Ireland Co-operative Oncology Research
Group (ICORG)) as a translational sub-study to CTRIAL-IE
(ICORG) study 08-17 (ICTRP ID: NCT00951535; ‘A Prospective
Phase II Dose Escalation Study Using IMRT for High Risk N0
M0 Prostate Cancer’) with an amendment to existing ethical
approval from St. Luke’s Hospital, and St. Luke’s Radiation
Oncology Units at St. James’s Hospital and Beaumont
Hospitals, Dublin. Patients enrolled in the study were male
prostate cancer patients who were consented prior to treat-
ment (therefore none of the Raman and/or biological data
presented here was taken from the patients whilst in their
treatment phase (i.e. hormone therapy or radiotherapy), but
rather were taken at baseline post-diagnosis), and were both
smokers and non-smokers within the age range from 58 to
85. Spectra were acquired from the PBMC fraction of their
blood for each of 22 different patients prior to radiotherapy.

2.2. Cell culture and PBMC isolation from
peripheral blood

Procedures for isolation of PBMCs from peripheral blood
have been reported previously (Maguire et al. 2015). Briefly,
after drawing of fresh blood into Lithium-heparin tubes,
PBMCs were isolated within 24 hours of collection. After isola-
tion of the PBMC layer from whole blood using Histopaque
and gentle centrifugation (400g) the PBMC fraction was
washed three times in de-ionized phosphate buffered saline
(DPBS) and pelleted (through centrifugation at 250g).
The pellet was resuspended in RPMI with all supplements,
divided into three flasks containing medium, and
incubated for 72 hours at 37 �C, 5% CO2 with 2.5% (v/v)
phytohemagglutinin.
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2.3. Sample prep and Raman spectroscopy

Cells in suspension were first centrifuged at 250g for
5minutes. Supernatant was removed and the cells were fixed
using 200ll of 2% paraformaldehyde in PBS. From the sus-
pension, 40 ll was drop-casted onto calcium fluoride (CaF2)
slides. The remaining suspension was centrifuged, and paraf-
ormaldehyde was removed and cells were then stored in
ethanol at �20 �C for c-H2AX staining at a later date.
Paraformaldehyde was removed from the slides for Raman
spectroscopy and they were then rinsed in deionized H2O for
5minutes. Washing was performed three times and then the
slides were allowed to dry for Raman spectroscopic
measurements.

Spectroscopic measurements were performed using a
660nm excitation on a LabRam HR800 (Horiba UK Ltd.,
Northampton, UK) system with all calibration and measure-
ment procedures as indicated previously (Maguire et al.
2015). Spectra were recorded from 40 lymphocytes for each
sample (dose and donor) using a rastering approach such
that each spectrum represents the spectrum from the whole
cell. All spectral processing procedures were conducted as
indicated previously (Maguire et al. 2015) using Matlab
(R2017a; Mathworks Inc., Natick, MA), along with in-house
developed algorithms and procedures available within the
PLS Toolbox (v 8.0.2, Eigenvector Research Inc.,
Wenatchee, MA).

2.4. Whole blood irradiation

The whole blood samples were irradiated using a 6MV pho-
ton beam produced by an Elekta Precise linear accelerator
(LINAC) at St. Luke’s Hospital, Dublin, operating at a nominal
dose rate of 6Gy/min. The LINAC was calibrated in accord-
ance with the 1990 IPSM code of practice by the Medical
Physics Department at St. Luke’s Hospital (Lillicrap et al.
1990), such that 100 Monitor Units (MU, a measure of ‘beam
on’ time) delivered a dose of 1Gy at 1.4 cm deep in water
positioned 100cm from the source for a 10� 10 cm2 field.

In order to achieve a uniform irradiation of flasks in prac-
tice, the irradiation conditions were altered from those at
calibration. A 30� 35 cm2 field was used to deliver each
dose. The flasks were also positioned 10cm deep in a water
equivalent phantom 90cm from the source. At 90cm from
the source 100MU delivers a dose of 0.812Gy at 10cm deep
in water for a 10� 10 cm2 field. The number of MU required
to deliver each of the doses outlined above must be cor-
rected for the different scatter conditions present with the
larger field size (30� 35 cm2). A correction factor of 1.1372
was therefore applied, which is the ratio of the field area of a
large field to a smaller one. Thus, at 90cm from the source,
100MU delivers a dose of 0.9234Gy (0.812� 1.1372), and so
the delivery of 0.05Gy required 6MU and 0.5Gy required
55MU (MU were rounded up to the nearest whole number
as partial MU could not be delivered on the LINAC).

The calculated doses were verified using Gafchromic EBT3
film (Ashland Inc., Bridgewater, NJ, USA). The film was cali-
brated against a Farmer type ionization chamber using the
triple channel dosimetry method (Lewis et al. 2012). The film

was scanned using the single scan protocol (Lewis et al.
2012) on an Epsont Expression 10000 XL scanner using the
recommended scanning resolution of 72 dpi in a 48-bit RGB
format (Fiandra et al. 2006; Micke et al. 2011; Lewis et al.
2012). Glass was placed over the calibration and test film
during scanning to minimize ringing artifacts. The film was
analyzed using FilmQA Pro (Ashland Inc., Bridgewater,
NJ, USA).

2.5. G2 chromosomal aberration assay

The G2 chromosomal radiosensitivity assay was performed to
produce a G2 radiosensitivity score per patient sample and
this was used as a parallel reference measurement of radi-
ation damage and sensitivity for a comparison to Raman
spectroscopic measurements. The procedure undertaken to
perform the assay is adapted from earlier work (Howe et al.
2005) and is described briefly below.

Thirty minutes after irradiation 0.2ml of colcemid (10 lg/
ml) (Roche Diagnostics GmbH, Mannheim, Germany) was
added to in vitro cultured whole blood cells and incubated
at 30 �C for 60minutes to arrest the lymphocyte cells in
metaphase. Lymphocytes were then isolated from other
whole blood cells through centrifugation at 1600rpm for
10minutes. After centrifugation, the lymphocyte cells were
plunged in ice to cool rapidly, supernatant was removed and
replaced with 10ml of pre-cooled 0.075M KCl hypotonic and
placed in ice for 20minutes to lyse the cells. After centrifuga-
tion at 1600rpm for 10minutes, cells were fixed twice with
3:1 methanol:glacial acetic acid, and stored at 4 �C overnight
or for longer if required. Slides were prepared by rinsing in
methanol 24 hours prior to use, and then briefly washed with
de-ionized water. One-to-two drops of the cell suspension
were dropped onto the slides. Three-percent Geimsa (GURR)
in pH 6.8 buffer was added to the slides for 15minutes to
stain the DNA in the lymphocyte cells. Slides were washed in
pH 6.8 buffer and left to dry before being mounted in DPX.
Slides were left for 24 hours (minimum) before analysis. The
number of chromosomal aberrations was recorded for 50
cells per slide and was multiplied by two to get a percentage
of aberrations for each slide. This constituted the G2 radio-
sensitivity score and was recorded for each dose (0, 50 and
500mGy) per patient sample. A radiation-induced G2 score
(riG2) was calculated by subtracting the sham-irradiated (0
mGy) G2 score from the irradiated G2 scores (50 and
500mGy) separately.

Previous studies have employed a scoring protocol for
100 metaphases but only a 500mGy dose point, and as the
present study includes a 50mGy dose point, this scoring
approach was deemed reasonable to maintain workflow.

2.6. Measurement of levels of DSB foci using c-H2AX
fluorescence

Methods for measurement of cH2AX foci were described in
detail previously (Maguire et al. 2015). Briefly, after the prep-
aration of cells for Raman spectroscopy, lymphocytes for the
cH2AX assay were stored at �20 �C until the time of analysis
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and were then permeabilized via incubation for 5minutes at
room temperature in 200–1000ll of 0.25% (v/v) Triton X-100
in PBS, followed by resuspension in 200 ll of blocking solu-
tion (PBS containing 2% (w/v) BSA) and incubated for
30minutes at room temperature. After removal of the block-
ing solution the cells were resuspended in 150 ll of primary
antibody solution (Anti-phospho-histone H2AX) for 2 hours
incubated at room temperature and after washing cells in
PBD, 150 ll of secondary antibody solution (Alexa Fluor 488)
was added. The samples were incubated for 1 hour in the
dark and subjected to a final washing step before fluores-
cence was measured using a BD Accuri C6 flow cytometer,
with signals from debris and aggregates removed using for-
ward and side scatter characteristics. From a minimum of
10,000 events per sample the cH2AX MFI was calculated.

2.7. Development of regression models for prediction of
c-H2AX fluorescence and G2 chromosomal
radiosensitivity from Raman spectra

2.7.1. Partial least squares regression
Partial least squares regression (PLSR) is an analytical tech-
nique that is used extensively in spectroscopy to regress,
using a linear model, a set of physical measurements (in
spectroscopy the physical measurements are the intensities
at each wavenumber or wavelength) onto a vector or matrix
of target agents or concentrations (Meade et al. 2010). PLSR
is a linear modeling approach that relates the target analyte
(Y) to a matrix of spectra (X), and a matrix of residual errors
(E) as (Varmuza and Filzmoser 2009):

Y ¼ XBþ E; (1)

where B is a matrix of regression coefficients. In order to pro-
duce parsimonious models, which use a minimum number of
variables, both X and Y undergo dimensionality reduction
using principal components analysis as:

X ¼ TPT þ Ex (2)

and

Y ¼ UQT þ EY; (3)

where P and Q are matrices of latent variables, T and U are
matrices of scores and EX and EY are matrices containing
residuals. The matrices of scores of latent variables T and U
can then be related through a linear regression as follows:

U ¼ TDþ H; (4)

where D is a diagonal matrix of regression parameters and H
is the residual matrix. In general, U is related to T by only a
subset of the matrix of scores and latent variables.

2.7.2. Support vector regression
Support vector regression (SVR) is a statistical learning
approach employing support vector machines for the pur-
poses of a regression task. A detailed discussion of their
properties is beyond the scope of the current study, and the
reader is referred to the seminal references in this section.

Support vector machines (SVMs), in a classification prob-
lem, are capable of learning the position of any complex
hyperplane separating two or more classes (Cristianini and
Shawe-Taylor 2000), and within a regression task, they can
similarly learn any complex function linking a matrix of X
data to Y targets (Smola and Sch€olkopf 2004). The advantage
of the use of SVR in their application to high-dimensional
problems, such as the present one, is their insensitivity to
outliers or data noise. Briefly, SVR is an application of statis-
tical learning for non-linear regression of multivariate or
multidimensional data, where a function f(x) is learned on
the basis of the input patterns, x, using a set of weights w
such that:

f xð Þ ¼ w; x þ b; (5)

where b is a real constant and w; x is the dot product
between w and x. The ‘support vectors’ are then the input
patterns which define f(x), and the number of support vec-
tors defines the model complexity, which naturally should be
minimized. To allow the algorithm to be insensitive to noise,
the SVM introduces the concept of a ‘soft-margin’ or error
such that ‘slack-variables’ are allowed to influence deviations
from the function by a degree specified by ni and ni� subject
to retaining a precision of e (epsilon) within the regression.
To prevent large deviations from the function two
approaches are then used: (i) the introduction of a penalty
parameter C to minimize the influence of the slack variables
(C-SVR) or (ii) the introduction of a parameter nu, �, specify-
ing the upper limit on the fraction of margin errors allowed
and the lower limit on the number of support vectors
required in the regression (m-SVR) (Sch€olkopf et al. 2000). In
the present study the m-SVR approach was used.

The final property of SVMs, which must be introduced in
the context of SVR is the kernel trick. In the formulation
defined in Equation (5), the algorithm is effectively a linear
regression. In order to allow nonlinear regression the kernel
trick is employed which linearizes the input patterns by map-
ping to a non-linear feature space where the linear function
f(x) may be learned. Various kernel tricks are available, includ-
ing linear, polynomial and sigmoidal. In the present study a
Gaussian radial-basis function (RBF) kernel was employed as
a non-linear mapping, whose width was denoted by a par-
ameter c, gamma. This kernel represents a mapping which is
adaptable to any non-linear function, as compared to the
other options which are detailed above, and therefore does
not require knowledge of the order of the non-linear regres-
sion function prior to the analysis.

2.7.3. Model training and testing
For regression of the spectral data against each of cH2AX
MFI and riG2 targets a database of spectra from 26 controls
and 22 patients at each of the three dose points used (0Gy,
0.05Gy and 0.5Gy) was created with these matched to the
relevant measurements of each biological target. Each spec-
tral subset (i.e. for an individual donor or patient and radi-
ation dose) was considered unique within the current
analysis such that a total of approximately 3� 48¼ 144 sub-
sets each containing 40 spectra of PBMCs were created.
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Within each spectral subset the spectra were averaged by
randomly selecting groups of 10 such that spectral noise
could be minimized (Meade et al. 2010). A set of training
data was then created by stratified-random selection of 70%
of the spectral subsets within each quartile of the reference
cH2AX MFI or riG2 score data, such that the algorithms could
be trained with spectral data that was matched to biological
targets over the full range available. The remaining spectral
subsets (30%) of the data were used to test each model’s
generalizability to unseen data, representing the likely per-
formance of the algorithm in the real world. A pooled ana-
lysis of all of the data from controls and patients in this way
presents the algorithms with spectral data from individuals
with a range of radiosensitivities, susceptibility to damage
and propensity for repair.

Optimization of the number of latent variables (or com-
plexity) within the PLSR models was performed using fivefold
cross-validation to find the minimum number of latent varia-
bles (LVs) that minimized root-mean-squared error of regres-
sion at calibration (RMSEC) on the training set. Similarly the
SVR models were tuned by varying the values of the C, c and
� parameters on the training matrix to find the optimal set
of parameters for regression. For both models their generaliz-
ability to unseen data was measured using the root-mean
squared error of prediction on the testing set (RMSEP). For
both modeling approaches the spectral averaging steps, the
random sorting of spectra between training and testing sets,
and model optimization steps were performed on 20 separ-
ate occasions to obtain robust measures of the performance
of each regression approach.

3. Results and discussion

3.1. Radiation-induced G2 scores and c-H2AX MFI

Figure 1 shows the radiation-induced G2 (riG2) scores for
both (a) controls and (b) patients with each radiation dose. A
clear dose-dependent variation in G2 score is seen in both

healthy controls and patients. A threshold for significance
here was considered as p< .01. At each dose, it was found
that the difference between the data at 0.05Gy and 0.5Gy
was statistically significantly different at p< .01 using a two-
tailed paired t-test for both controls and patients. In addition,
it was found that the difference in the G2 scores between
controls and patients at 0.5Gy, but not 0.05Gy, was statistic-
ally significantly different at the same threshold using the
same analysis. A more thorough statistical analysis of this
data will be forthcoming at the conclusion of follow-up of
the prostate cancer patients enrolled in this study.

c-H2AX MFI for both (a) controls and (b) patients is shown
in Figure 2 with respect to radiation dose. Again a dose-
dependent variation is seen in both healthy controls and
patients, although in this case no statistically significant dif-
ference was found between measurements at each dose
using a two-tailed t-test. Furthermore, the wide variation in
cH2AX MFI between individuals is apparent in the extent of
the error bars in both patient and healthy control subsets, as
has been found previously (Yoon et al. 2002; Vral et al. 2004).

Although previous studies of single-cell lines and
extracted PBMCs (Horn et al. 2011; Asaithamby and Chen
2009; Andrievski and Wilkins 2009) have observed a linear
dose response in cH2AX foci over the range from 10mGy to
10,000mGy, any linearity in dose response in the data in
Figure 2 will be obscured by the large inter-individual vari-
ation in cH2AX MFI observed using flow cytometry. This
could be due to the lack of sensitivity in flow cytometry for
measurement of cH2AX foci as compared to assays based on
manual or automated foci scoring by microscopy (Redon
et al. 2012). However, work by Roch-Lefevre that used
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Figure 1. Measured radiation-induced G2 scores with dose in control (HC) and
prostate cancer (PC) patients. Error bars depict the standard deviation from the
mean at each dose. The radiation-induced G2 scores are normalized by subtrac-
tion of the recorded G2 score for any individual at 0Gy from that measured at
any dose to correct for spontaneous aberrations. The asterisks indicate the level
of significance of the differences recorded from a two-tailed, paired t-test;�p< 1e-4; ��p< .005; ���p< .2.
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Figure 2. Measured cH2AX mean-fold increase in fluorescence intensity (MFI)
(normalized to the 0Gy control) with dose in control (HC) and prostate cancer
(PC) patients. Error bars depict the standard deviation from the mean at each
dose and are shown in the positive direction only due to their magnitude. No
statistically significant differences were observed between cH2AX MFI levels at
doses of 0.05Gy and 0.5Gy in either control or prostate cancer patients.

Table 1. Coefficients of variation (CV) in cH2AX MFI
with radiation dose for healthy control (HC) and pros-
tate cancer (PC) cohorts.

Dose 0Gy 0.05Gy 0.5Gy

CV HC 0 0.12 0.63
CV PC 0 1.83 2.68
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fluorescence microscopy with automated scoring of foci pro-
vides a reference to which our data can be compared.
Interrogation of the coefficient of variation in cH2AX MFI
with dose (see Table 1) for the control cohort reveals that it
is increasing with dose in the control cohort (R2

(adj.)¼ 0.984), with the level at 0.5Gy similar to that observed
previously (coefficient of variation of 0.51) by Roch-Lefevre
et al (Roch-Lef�evre et al. 2010).

In regard to the prostate cancer, cohort coefficients of
variation are very large and we are not aware of any compar-
able work as presented in the literature. In the case of this
data, again the variability could be due to a lack of sensitivity
of the flow cytometry approach, but equally could be due to
the complexity of the cellular response to ionising radiation
(Rosenstein et al. 2014) or indeed the molecular mechanisms
by which prostate cancer develops (Sreekumar et al. 2009).
The molecular mechanisms underlying both of these phe-
nomena are not yet fully understood and the genesis of
prostate cancer has been attributed on a molecular level to a
variety of different genes with different functions. Some of
these are involved in DNA damage/repair mechanisms which
could affect any experiments examining DNA damage using
cH2AX fluorescence.

3.2. Mean Raman spectra of lymphocytes from healthy
control and prostate cancer patients

Mean spectra of lymphocytes from both healthy controls and
prostate cancer patients are shown in Figure 3. A different
spectrum is also provided which shows bands in which inten-
sity differences exist between the two cohorts, including sig-
nificant differences in the band centered at 783 cm�1

(associated with overlapping modes of vibration of both the
symmetric stretch of DNA phosphodiester (–PO2

�) and ring
breathing modes in uracil, cytosine and thymine) and
1431 cm�1 (associated with the overlapping modes of the CH
deformation vibration in guanine, adenine and lipids

generally) (Meade et al. 2007; Andrievski and Wilkins 2009).
In addition an apparent shift in the band at 1001 cm�1 in the
healthy control to 995 cm�1 in the prostate cancer sample
was seen, where this band is associated with the phenylalan-
ine ring breathing mode (Meade et al. 2007). The shading in
the bottom panel of Figure 3 shows the regions of the differ-
ence spectrum which are statistically significant (using a two-
tailed t-test at p< .001) between the two samples. It is clear
from this data that the lymphocyte fraction of whole blood
offers diagnostic capabilities for prostate cancer using Raman
spectroscopy. This will be explored in future work.

3.3. Regression of Raman spectra onto radiation-
induced G2 scores and cH2AX MFI

The performance characteristics for both PLSR and SVR in
predicting riG2 scores and cH2AX MFI are shown in Table 2.
Both root-mean squared error of calibration (RMSEC) and pre-
diction (RMSEP) are the key outputs and represent the uncer-
tainty in prediction of the target (G2 or cH2AX-MFI) at its
training (calibration) and testing (prediction) stage. From
Table 2 it can be concluded that regression algorithm is not
capable of predicting G2 score with a high degree of confi-
dence. This implies that biochemical signatures within Raman
spectra are not predictive of riG2 score and its measure of
radiosensitivity, and that the complex relationship that exists
cannot easily be captured by PLSR or SVR.

In contrast, the performance characteristics for prediction
of cH2AX MFI from Raman spectra using either PLSR or SVR
are shown in Table 3. In Figures 4 and 5 visualizations of one
execution (from the total of 20) of the PLSR and SVR algo-
rithms are also provided. It is clear that both algorithms are
capable of predicting the cH2AX MFI target with varying

Figure 3. Mean (top) and difference spectra (bottom) for peripheral blood
mononuclear cells (PBMCs) for sham-irradiated control and prostate cancer
patients. The shaded regions in the bottom panel depict the spectral regions
which are significantly different between each sample set using a two-tailed
t-test with p< .001.

Table 2. Collated performance metrics for both PLSR and SVR of Raman spec-
tra versus radiation-induced G2 score.

Metric PLSR SVR

RMSEC 55 (5) 26 (4)
RMSEP 118 (18) 86 (14)
R2 Training 0.41 (0.11) 0.91 (0.03)
R2 Test 0.1 (0.1) 0.01 (0.2)
Cost – 50 (0)
Gamma – 0.28 (0.08)
Nu – 0.46 (0.16)
NLV 1.5 (1.1) –

All are given as the mean (with standard deviation in brackets) for prediction
of G2 score using Raman spectra of PMBCs over 20 separate models.

Table 3. Collated performance metrics for both PLSR and SVR of Raman spec-
tra versus cH2AX MFI.

Metric PLSR SVR

RMSEC 0.76 (0.17) 0.09 (0.01)
RMSEP 2.67 (0.82) 1.59 (0.17)
R2 Training 0.94 (0.01) 0.99 (0.002)
R2 Test 0.37 (0.37) 0.67 (0.31)
Cost – 40 (17.8)
Gamma – 0.26 (0.096)
Nu – 0.24 (0.17)
NLV 30 (11) –

All are given as the mean (with standard deviation in brackets) for prediction
of cH2AX MFI using Raman spectra of PBMCs over 20 separate models.
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levels of confidence, with the non-linear SVR algorithm the
superior overall. This latter result is important and suggests
that a non-linear relationship exists between the spectral sig-
natures of DNA double-strand break (DSB) damage and
repair which exist within the Raman spectra of PBMCs and
the measures of the level of DNA DSB represented by cH2AX
MFI. In previous work we have demonstrated that a nonlinear
relationship exists between spectral signatures of

keratinocytes and radiation dose in vitro, where we have
characterized this relationship as following the induced repair
model for bands associated with both DNA and RNA back-
bone vibrations (Meade et al. 2016). While we have found
that the intensities of vibrational modes associated with
other species do not necessarily follow the induced repair
model, it is possible that the nonlinearity suggested by the
SVR results signifies that more isolated spectral regions that
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Figure 4. (A) Sample visualization of cross-validation error (root-mean squared error of cross-validation) of PLSR at training showing optimal model complexity
(number of latent variables, LV) at intersection of dashed lines. (B) Sample results of PLSR of PBMC Raman spectra versus cH2AX MFI for (top) training data and
(bottom) test data.
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are signatures of DNA DSB’s and repair foci do exist,
although this would be the subject of a dedicated analysis
beyond the scope of the present article. Importantly isolating
spectral regions which are associated with DNA DSB repair
within the context of the intra-individual variability in cH2AX
MFI seen here and elsewhere will potentially require a larger
sample set than used in the present work.

Both the PLSR cross-validation results (Figure 4(A)) and
the SVR algorithm parameters (Table 3) demonstrate the
complexity of the models that are required to predict cH2AX
MFI using either approach. Although model parsimony is
desirable in general, the relative agreement between RMSE
within the training and testing sets for either PLSR or SVR
indicates that the underlying spectral signatures selected by
either model are both consistent and robust across the sam-
ple set, i.e. little overfitting by either algorithm occurred.
Additionally, this level of model complexity has been
observed in previous studies of irradiated keratinocytes
(Meade et al. 2010, 2014).

Finally, the RMSE of prediction (RMSEP) obtained using
the SVR algorithm indicates that our method using Raman
spectroscopy to predict levels of cH2AX focal damage has an
uncertainty in the region of 1.59 MFI (with data normalized
to the control, 0Gy sample), which in the context of the data
used in the current work where the maximum cH2AX MFI
recorded was 32.4. This represents an uncertainty level of
approximately 5%, correlating well with previous data on
uncertainties in retrospective dosimetry with vibrational spec-
troscopy (Meade et al. 2010, 2014). This gives further encour-
agement for the use of this method in label-free
retrospective biodosimetry and other prospective analyses
using the PBMC fraction of whole blood.

4. Conclusions

Raman spectroscopy has been suggested as representing a
label-free method for the characterization of biological sam-
ples, including the context of cancer biology and radiobiol-
ogy. The present work confirms that measurements of the
Raman spectra of the PBMC fraction of whole blood may be
used to provide quality estimates of the level of DNA dam-
age in humans. Data here also show that a link between the
Raman spectra of lymphocytes and measures of radiosensitiv-
ity from the G2 chromosomal aberration assay is a very com-
plex one, which requires further investigation, including the
use of higher dose points than that used in the present
work, and age-matched controls. This work therefore con-
firms that Raman spectroscopy offers a label-free assay for
the characterization of radiobiological response both in vitro
and ex vivo.
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