11 research outputs found

    Human fecal contamination corresponds to changes in the freshwater bacterial communities of a large river basin

    Get PDF
    Microbial water quality is generally monitored by culturable fecal indicator bacteria (FIB), which are intended to signal human health risk due to fecal pollution. However, FIB have limited utility in most urbanized watersheds as they do not discriminate among fecal pollution sources, tend to make up a small fraction of the total microbial community, and do not inform on pollution impacts on the native ecosystem. To move beyond these limitations, we assessed entire bacterial communities and investigated how bacterial diversity relates to traditional ecological and human health-relevant water quality indicators throughout the Milwaukee River Basin. Samples were collected from 16 sites on 5 days during the summer, including both wet and dry weather events, and were processed by 16S rRNA gene amplicon sequencing. Historical water quality at each sampling location, as opposed to upstream land use, was associated significantly with bacterial community alpha diversity. Source partitioning the sequence data was important for determining water quality relationships. Sewage-associated bacterial sequences were detected in all samples, and the relative abundance of sewage sequences was strongly associated with the human Bacteroides fecal marker. From this relationship, we developed a preliminary threshold for human sewage pollution when using bacterial community sequence data. Certain abundant freshwater bacterial sequences were also associated with human fecal pollution, suggesting their possible utility in water quality monitoring. This study sheds light on how bacterial community analysis can be used to supplement current water quality monitoring techniques to better understand interactions between ecological water quality and human health indicators

    Standardizing data reporting in the research community to enhance the utility of open data for SARS-CoV-2 wastewater surveillance

    Get PDF
    SARS-CoV-2 RNA detection in wastewater is being rapidly developed and adopted as a public health monitoring tool worldwide. With wastewater surveillance programs being implemented across many different scales and by many different stakeholders, it is critical that data collected and shared are accompanied by an appropriate minimal amount of meta-information to enable meaningful interpretation and use of this new information source and intercomparison across datasets. While some databases are being developed for specific surveillance programs locally, regionally, nationally, and internationally, common globally-adopted data standards have not yet been established within the research community. Establishing such standards will require national and international consensus on what meta-information should accompany SARS-CoV-2 wastewater measurements. To establish a recommendation on minimum information to accompany reporting of SARS-CoV-2 occurrence in wastewater for the research community, the United States National Science Foundation (NSF) Research Coordination Network on Wastewater Surveillance for SARS-CoV-2 hosted a workshop in February 2021 with participants from academia, government agencies, private companies, wastewater utilities, public health laboratories, and research institutes. This report presents the primary two outcomes of the workshop: (i) a recommendation on the set of minimum meta-information that is needed to confidently interpret wastewater SARS-CoV-2 data, and (ii) insights from workshop discussions on how to improve standardization of data reporting

    Looking Forward: The Role of Academic Researchers in Building Sustainable Wastewater Surveillance Programs

    No full text
    BACKGROUND: In just over 2 years, tracking the COVID-19 pandemic through wastewater surveillance advanced from early reports of successful SARS-CoV-2 RNA detection in untreated wastewater to implementation of programs in at least 60 countries. Early wastewater monitoring efforts primarily originated in research laboratories and are now transitioning into more formal surveillance programs run in commercial and public health laboratories. A major challenge in this progression has been to simultaneously optimize methods and build scientific consensus while implementing surveillance programs, particularly during the rapidly changing landscape of the pandemic. Translating wastewater surveillance results for effective use by public health agencies also remains a key objective for the field. OBJECTIVES: We examined the evolution of wastewater surveillance to identify model collaborations and effective partnerships that have created rapid and sustained success. We propose needed areas of research and key roles academic researchers can play in the framework of wastewater surveillance to aid in the transition from early monitoring efforts to more formalized programs within the public health system. DISCUSSION: Although wastewater surveillance has rapidly developed as a useful public health tool for tracking COVID-19, there remain technical challenges and open scientific questions that academic researchers are equipped to address. This includes validating methodology and backfilling important knowledge gaps, such as fate and transport of surveillance targets and epidemiological links to wastewater concentrations. Our experience in initiating and implementing wastewater surveillance programs in the United States has allowed us to reflect on key barriers and draw useful lessons on how to promote synergy between different areas of expertise. As wastewater surveillance programs are formalized, the working relationships developed between academic researchers, commercial and public health laboratories, and data users should promote knowledge co-development. We believe active involvement of academic researchers will contribute to building robust surveillance programs that will ultimately provide new insights into population health. https://doi.org/10.1289/EHP11519

    Looking Forward: The Role of Academic Researchers in Building Sustainable Wastewater Surveillance Programs

    No full text
    Background: In the span of just two years, tracking the COVID-19 pandemic through wastewater surveillance has advanced from early reports of successful SARS-CoV-2 RNA detection in untreated wastewater to implementation of programs in at least 60 countries. Early wastewater monitoring efforts primarily originated in research laboratories and are now transitioning into more formal surveillance programs run in commercial and public health laboratories. A major challenge in this progression has been to simultaneously optimize methods and build scientific consensus while implementing surveillance programs, particularly during the rapidly changing landscape of the pandemic. Translating wastewater surveillance results for effective use by public health agencies also remains a key objective for the field. Objectives: We examine the evolution of wastewater surveillance to identify model collaborations and effective partnerships that have created rapid and sustained success. We propose needed areas of research and key roles academic researchers can play in the framework of wastewater surveillance to aid in the transition of early monitoring efforts to more formalized programs within the public health system. Discussion: Wastewater surveillance has rapidly developed as a public health tool Clinical testing programs are ramping down and home testing is on the rise, making wastewater monitoring important for future surveillance of COVID-19. Our experience in initiating and implementing wastewater surveillance programs in the United States has allowed us to reflect on key barriers and organizational challenges and draw useful lessons. As wastewater surveillance programs are formalized, the working relationships developed between academic researchers, commercial and public health laboratories, and data users should continue and should promote knowledge co-development. While wastewater surveillance has demonstrated utility for tracking COVID-19, there remain technical challenges and open scientific questions that researchers are equipped to address, which will contribute to building robust surveillance programs that provide public health practitioners with new insights into population health

    Evaluation of Sampling, Analysis, and Normalization Methods for SARS-CoV-2 Concentrations in Wastewater to Assess COVID-19 Burdens in Wisconsin Communities

    No full text
    Wastewater surveillance for SARS-CoV-2 provides an approach for assessing the infection burden across a sewer service area. For these data to be useful for public health, measurement variability and the relationship to case data need to be established. We determined SARS-CoV-2 RNA concentrations in the influent of 12 wastewater treatment plants from August 2020 to January 2021. Technical replicates for N1 gene concentrations showed a relative standard deviation of 24%, suggesting it is possible to track relatively small (∼30%) changes in SARS-CoV-2 concentrations over time. COVID-19 cases were correlated significantly (ρ ≥ 0.70) to wastewater SARS-CoV-2 RNA concentrations across large and small service areas, with weaker relationships (ρ ≥ 0.59) in two communities. SARS-CoV-2 concentrations normalized to per capita slightly improved correlations to COVID-19 incidence, but normalizing to a spiked recovery control (BCoV) or a fecal marker (PMMoV or HF183) reduced correlations for a number of plants. Daily sampling demonstrated that a minimum of two samples collected per week were needed to maintain accuracy in trend analysis. The differences in the strength of SARS-CoV-2 relationships to COVID-19 incidence and the effect of normalization on these data among communities demonstrate that rigorous validation should be performed at individual sites where wastewater surveillance programs are implemented

    Evaluation of sampling frequency and normalization of SARS-CoV-2 wastewater concentrations for capturing COVID-19 burdens in the community

    No full text
    Wastewater surveillance for SARS-CoV-2 provides an approach for assessing the infection burden across a city. For these data to be useful for public health, measurement variability and the relationship to case data need to be established. We measured SARS-CoV-2 RNA concentrations in the influent of twelve wastewater treatment plants from August 2020 to January 2021. Replicate samples demonstrated that N1 gene target concentrations varied by ±21% between technical replicate filters and by ±14% between duplicate assays. COVID-19 cases were correlated significantly (rho≥0.70) to wastewater SARS-CoV-2 RNA concentrations for seven plants, including large and small cities. SARS-CoV-2 data normalized to flow improved correlations to reported COVID-19 cases for some plants, but normalizing to a spiked recovery control (BCoV) or a fecal marker (PMMoV or HF183) generally reduced correlations. High frequency sampling demonstrated that a minimum of two samples collected per week was needed to maintain accuracy in trend analysis. We found a significantly different ratio of COVID-19 cases to SARS-CoV-2 loads in one of three large communities, suggesting a higher rate of undiagnosed cases. These data demonstrate that SARS-CoV-2 wastewater surveillance can provide a useful community-wide metric to assess the course of the COVID-19 pandemic

    SARS-CoV-2 Wastewater Surveillance for Public Health Action.

    No full text
    Wastewater surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has garnered extensive public attention during the coronavirus disease pandemic as a proposed complement to existing disease surveillance systems. Over the past year, methods for detection and quantification of SARS-CoV-2 viral RNA in untreated sewage have advanced, and concentrations in wastewater have been shown to correlate with trends in reported cases. Despite the promise of wastewater surveillance, for these measurements to translate into useful public health tools, bridging the communication and knowledge gaps between researchers and public health responders is needed. We describe the key uses, barriers, and applicability of SARS-CoV-2 wastewater surveillance for supporting public health decisions and actions, including establishing ethics consideration for monitoring. Although wastewater surveillance to assess community infections is not a new idea, the coronavirus disease pandemic might be the initiating event to make this emerging public health tool a sustainable nationwide surveillance system, provided that these barriers are addressed

    Sars-Cov-2 Wastewater Surveillance for Public Health Action: Connecting Perspectives From Wastewater Researchers and Public Health Officials During a Global Pandemic

    No full text
    Wastewater surveillance for SARS-CoV-2 has garnered extensive public attention during the COVID-19 pandemic as a proposed complement to existing disease surveillance systems. Over the past year, environmental microbiology and engineering researchers have advanced methods for detection and quantification of SARS-CoV-2 viral RNA in untreated sewage and demonstrated that the trends in wastewater are correlated with trends in cases reported days to weeks later depending on the location. At the start of the pandemic, the virus was also detected in wastewater in locations prior to known cases. Despite the promise of wastewater surveillance, for these measurements to translate into useful public health tools, it is necessary to bridge the barriers between researchers and the public health responders who will ultimately use the data. Here we describe the key uses, barriers, and applicability of SARS-CoV-2 wastewater surveillance for supporting public health decisions and actions. This perspective was formed from a multidisciplinary group of environmental microbiology, engineering, wastewater, and public health experts, as well as from opinions shared during three focus group discussions with officials from ten state and local public health agencies. The key barriers to use of wastewater surveillance data identified were: (1) As a new data source, most public health agencies are not yet comfortable interpreting wastewater data; (2) Public health agencies want to see SARS-CoV-2 wastewater data in their own communities to gain confidence in its utility; (3) New institutional knowledge and increased capacity is likely needed to sustain wastewater surveillance systems; and (4) The ethics of wastewater surveillance data collection, sharing, and use are not yet established. Overall, while wastewater surveillance to assess community infections is not a new idea, by addressing these barriers, the COVID-19 pandemic may be the initiating event that turns this emerging public health tool into a sustainable nationwide surveillance system
    corecore