1,085 research outputs found

    Casimir forces in the time domain II: Applications

    Full text link
    Our preceding paper introduced a method to compute Casimir forces in arbitrary geometries and for arbitrary materials that was based on a finite-difference time-domain (FDTD) scheme. In this manuscript, we focus on the efficient implementation of our method for geometries of practical interest and extend our previous proof-of-concept algorithm in one dimension to problems in two and three dimensions, introducing a number of new optimizations. We consider Casimir piston-like problems with nonmonotonic and monotonic force dependence on sidewall separation, both for previously solved geometries to validate our method and also for new geometries involving magnetic sidewalls and/or cylindrical pistons. We include realistic dielectric materials to calculate the force between suspended silicon waveguides or on a suspended membrane with periodic grooves, also demonstrating the application of PML absorbing boundaries and/or periodic boundaries. In addition we apply this method to a realizable three-dimensional system in which a silica sphere is stably suspended in a fluid above an indented metallic substrate. More generally, the method allows off-the-shelf FDTD software, already supporting a wide variety of materials (including dielectric, magnetic, and even anisotropic materials) and boundary conditions, to be exploited for the Casimir problem.Comment: 11 pages, 12 figures. Includes additional examples (dispersive materials and fully three-dimensional systems

    Assessment of cockpit interface concepts for data link retrofit

    Get PDF
    The problem is examined of retrofitting older generation aircraft with data link capability. The approach taken analyzes requirements for the cockpit interface, based on review of prior research and opinions obtained from subject matter experts. With this background, essential functions and constraints for a retrofit installation are defined. After an assessment of the technology available to meet the functions and constraints, candidate design concepts are developed. The most promising design concept is described in detail. Finally, needs for further research and development are identified

    Achieving a Strongly Temperature-Dependent Casimir Effect

    Get PDF
    We propose a method of achieving large temperature sensitivity in the Casimir force that involves measuring the stable separation between dielectric objects immersed in fluid. We study the Casimir force between slabs and spheres using realistic material models, and find large > 2nm/K variations in their stable separations (hundreds of nanometers) near room temperature. In addition, we analyze the effects of Brownian motion on suspended objects, and show that the average separation is also sensitive to changes in temperature . Finally, this approach also leads to rich qualitative phenomena, such as irreversible transitions, from suspension to stiction, as the temperature is varied

    Structural anisotropy and orientation-induced Casimir repulsion in fluids

    Full text link
    In this work we theoretically consider the Casimir force between two periodic arrays of nanowires (both in vacuum, and on a substrate separated by a fluid) at separations comparable to the period. Specifically, we compute the dependence of the exact Casimir force between the arrays under both lateral translations and rotations. Although typically the force between such structures is well-characterized by the Proximity Force Approximation (PFA), we find that in the present case the microstructure modulates the force in a way qualitatively inconsistent with PFA. We find instead that effective-medium theory, in which the slabs are treated as homogeneous, anisotropic dielectrics, gives a surprisingly accurate picture of the force, down to separations of half the period. This includes a situation for identical, fluid-separated slabs in which the exact force changes sign with the orientation of the wire arrays, whereas PFA predicts attraction. We discuss the possibility of detecting these effects in experiments, concluding that this effect is strong enough to make detection possible in the near future.Comment: 12 pages, 9, figure. Published version with expanded discussio

    Structural anisotropy and orientation-induced Casimir repulsion in fluids

    Full text link
    In this work we theoretically consider the Casimir force between two periodic arrays of nanowires (both in vacuum, and on a substrate separated by a fluid) at separations comparable to the period. Specifically, we compute the dependence of the exact Casimir force between the arrays under both lateral translations and rotations. Although typically the force between such structures is well-characterized by the Proximity Force Approximation (PFA), we find that in the present case the microstructure modulates the force in a way qualitatively inconsistent with PFA. We find instead that effective-medium theory, in which the slabs are treated as homogeneous, anisotropic dielectrics, gives a surprisingly accurate picture of the force, down to separations of half the period. This includes a situation for identical, fluid-separated slabs in which the exact force changes sign with the orientation of the wire arrays, whereas PFA predicts attraction. We discuss the possibility of detecting these effects in experiments, concluding that this effect is strong enough to make detection possible in the near future.Comment: 12 pages, 9, figure. Published version with expanded discussio

    Selection of variant viruses during replication and transmission of H7N1 viruses in chickens and turkeys

    Get PDF
    AbstractThe influence of different glycosylation patterns of the haemagglutinin glycoprotein of H7N1 avian influenza viruses on virus replication in vivo was examined. Experimental infection of chickens and turkeys was carried out with H7N1 avian influenza viruses with alternative sites of glycosylation in the haemagglutinin and infected birds were sampled daily by swabbing the buccal and cloacal cavities. cDNAs of the HA1 coding region of the HA gene were prepared from the swabs and cloned into plasmids. Sequencing multiple plasmids made from individual swabs taken over the period of virus shedding showed that viruses with specific patterns of glycosylation near the receptor binding site were stable when birds were infected with a single variant, but when presented with a mixed population of viruses encoding differing patterns of glycosylation a specific variant was rapidly selected in the infected host

    Microstructure Effects for Casimir Forces in Chiral Metamaterials

    Full text link
    We examine a recent prediction for the chirality-dependence of the Casimir force in chiral metamaterials by numerical computation of the forces between the exact microstructures, rather than homogeneous approximations. We compute the exact force for a chiral bent-cross pattern, as well as forces for an idealized "omega"-particle medium in the dilute approximation and identify the effects of structural inhomogeneity (i.e. proximity forces and anisotropy). We find that these microstructure effects dominate the force for separations where chirality was predicted to have a strong influence. To get observations of chirality free from microstructure effects, one must go to large separations where the effect of chirality is at most ∼10−4\sim10^{-4} of the total force.Comment: 5 pages, 4 figure

    Identifying the genetic basis of antigenic change in influenza A(H1N1)

    Get PDF
    Determining phenotype from genetic data is a fundamental challenge. Influenza A viruses undergo rapid antigenic drift and identification of emerging antigenic variants is critical to the vaccine selection process. Using former seasonal influenza A(H1N1) viruses, hemagglutinin sequence and corresponding antigenic data were analyzed in combination with 3-D structural information. We attributed variation in hemagglutination inhibition to individual amino acid substitutions and quantified their antigenic impact, validating a subset experimentally using reverse genetics. Substitutions identified as low-impact were shown to be a critical component of influenza antigenic evolution and by including these, as well as the high-impact substitutions often focused on, the accuracy of predicting antigenic phenotypes of emerging viruses from genotype was doubled. The ability to quantify the phenotypic impact of specific amino acid substitutions should help refine techniques that predict the fitness and evolutionary success of variant viruses, leading to stronger theoretical foundations for selection of candidate vaccine viruses
    • …
    corecore