6 research outputs found

    Phylogenomics of the adaptive radiation of Triturus newts supports gradual ecological niche expansion towards an incrementally aquatic lifestyle

    Get PDF
    Newts of the genus Triturus (marbled and crested newts) exhibit substantial variation in the number of trunk vertebrae (NTV) and a higher NTV corresponds to a longer annual aquatic period. Because the Triturus phylogeny has thwarted resolution to date, the evolutionary history of NTV, annual aquatic period, and their potential coevolution has remained unclear. To resolve the phylogeny of Triturus, we generated a c. 6,000 transcriptome-derived marker data set using a custom target enrichment probe set, and conducted phylogenetic analyses using: 1) data concatenation with RAxML, 2) gene-tree summary with ASTRAL, and 3) species-tree estimation with SNAPP. All analyses produce the same, highly supported topology, despite cladogenesis having occurred over a short timeframe, resulting in short internal branch lengths. Our new phylogenetic hypothesis is consistent with the minimal number of inferred changes in NTV count necessary to explain the diversity in NTV observed today. Although a causal relationship between NTV, body form, and aquatic ecology has yet to be experimentally established, our phylogeny indicates that these features have evolved together, and suggest that they may underlie the adaptive radiation that characterizes Triturus

    Conservation of biodiversity in the genomics era

    No full text
    Abstract “Conservation genomics” encompasses the idea that genome-scale data will improve the capacity of resource managers to protect species. Although genetic approaches have long been used in conservation research, it has only recently become tractable to generate genome-wide data at a scale that is useful for conservation. In this Review, we discuss how genome-scale data can inform species delineation in the face of admixture, facilitate evolution through the identification of adaptive alleles, and enhance evolutionary rescue based on genomic patterns of inbreeding. As genomic approaches become more widely adopted in conservation, we expect that they will have a positive impact on management and policy decisions
    corecore