14,723 research outputs found

    On the Intracluster Medium in Cooling Flow & Non-Cooling Flow Clusters

    Full text link
    Recent X-ray observations have highlighted clusters that lack entropy cores. At first glance, these results appear to invalidate the preheated ICM models. We show that a self-consistent preheating model, which factors in the effects of radiative cooling, is in excellent agreement with the observations. Moreover, the model naturally explains the intrinsic scatter in the L-T relation, with ``cooling flow'' and ``non-cooling flow'' systems corresponding to mildly and strongly preheated systems, respectively. We discuss why preheating ought to be favoured over merging as a mechanism for the origin of ``non-cooling flow'' clusters.Comment: 4 pages, to appear in the proceedings of the "Multiwavelength Cosmology" Conference held in Mykonos, Greece, June 2003, ed. M. Plionis (Kluwer

    Cosmology with velocity dispersion counts: an alternative to measuring cluster halo masses

    Get PDF
    The evolution of galaxy cluster counts is a powerful probe of several fundamental cosmological parameters. A number of recent studies using this probe have claimed tension with the cosmology preferred by the analysis of the Planck primary CMB data, in the sense that there are fewer clusters observed than predicted based on the primary CMB cosmology. One possible resolution to this problem is systematic errors in the absolute halo mass calibration in cluster studies, which is required to convert the standard theoretical prediction (the halo mass function) into counts as a function of the observable (e.g., X-ray luminosity, Sunyaev-Zel'dovich flux, optical richness). Here we propose an alternative strategy, which is to directly compare predicted and observed cluster counts as a function of the one-dimensional velocity dispersion of the cluster galaxies. We argue that the velocity dispersion of groups/clusters can be theoretically predicted as robustly as mass but, unlike mass, it can also be directly observed, thus circumventing the main systematic bias in traditional cluster counts studies. With the aid of the BAHAMAS suite of cosmological hydrodynamical simulations, we demonstrate the potential of the velocity dispersion counts for discriminating even similar Λ\LambdaCDM models. These predictions can be compared with the results from existing redshift surveys such as the highly-complete Galaxy And Mass Assembly (GAMA) survey, and upcoming wide-field spectroscopic surveys such as the Wide Area Vista Extragalactic Survey (WAVES) and the Dark Energy Survey Instrument (DESI).Comment: 15 pages, 13 figures. Accepted for publication in MNRAS. New section on cosmological forecasts adde

    An alternative derivation of the gravitomagnetic clock effect

    Get PDF
    The possibility of detecting the gravitomagnetic clock effect using artificial Earth satellites provides the incentive to develop a more intuitive approach to its derivation. We first consider two test electric charges moving on the same circular orbit but in opposite directions in orthogonal electric and magnetic fields and show that the particles take different times in describing a full orbit. The expression for the time difference is completely analogous to that of the general relativistic gravitomagnetic clock effect in the weak-field and slow-motion approximation. The latter is obtained by considering the gravitomagnetic force as a small classical non-central perturbation of the main central Newtonian monopole force. A general expression for the clock effect is given for a spherical orbit with an arbitrary inclination angle. This formula differs from the result of the general relativistic calculations by terms of order c^{-4}.Comment: LaTex2e, 11 pages, 1 figure, IOP macros. Submitted to Classical and Quantum Gravit

    Models of the ICM with Heating and Cooling: Explaining the Global and Structural X-ray Properties of Clusters

    Full text link
    (Abridged) Theoretical models that include only gravitationally-driven processes fail to match the observed mean X-ray properties of clusters. As a result, there has recently been increased interest in models in which either radiative cooling or entropy injection play a central role in mediating the properties of the intracluster medium. Both sets of models give reasonable fits to the mean properties of clusters, but cooling only models result in fractions of cold baryons in excess of observationally established limits and the simplest entropy injection models do not treat the "cooling core" structure present in many clusters and cannot account for entropy profiles revealed by recent X-ray observations. We consider models that marry radiative cooling with entropy injection, and confront model predictions for the global and structural properties of massive clusters with the latest X-ray data. The models successfully and simultaneously reproduce the observed L-T and L-M relations, yield detailed entropy, surface brightness, and temperature profiles in excellent agreement with observations, and predict a cooled gas fraction that is consistent with observational constraints. The model also provides a possible explanation for the significant intrinsic scatter present in the L-T and L-M relations and provides a natural way of distinguishing between clusters classically identified as "cooling flow" clusters and dynamically relaxed "non-cooling flow" clusters. The former correspond to systems that had only mild levels (< 300 keV cm^2) of entropy injection, while the latter are identified as systems that had much higher entropy injection. This is borne out by the entropy profiles derived from Chandra and XMM-Newton.Comment: 20 pages, 15 figures, accepted for publication in the Astrophysical Journa

    Barrier and internal wave contributions to the quantum probability density and flux in light heavy-ion elastic scattering

    Get PDF
    We investigate the properties of the optical model wave function for light heavy-ion systems where absorption is incomplete, such as α+40\alpha + ^{40}Ca and α+16\alpha + ^{16}O around 30 MeV incident energy. Strong focusing effects are predicted to occur well inside the nucleus, where the probability density can reach values much higher than that of the incident wave. This focusing is shown to be correlated with the presence at back angles of a strong enhancement in the elastic cross section, the so-called ALAS (anomalous large angle scattering) phenomenon; this is substantiated by calculations of the quantum probability flux and of classical trajectories. To clarify this mechanism, we decompose the scattering wave function and the associated probability flux into their barrier and internal wave contributions within a fully quantal calculation. Finally, a calculation of the divergence of the quantum flux shows that when absorption is incomplete, the focal region gives a sizeable contribution to nonelastic processes.Comment: 16 pages, 15 figures. RevTeX file. To appear in Phys. Rev. C. The figures are only available via anonynous FTP on ftp://umhsp02.umh.ac.be/pub/ftp_pnt/figscat

    Forever Young: High Chromospheric Activity in M subdwarfs

    Get PDF
    We present spectroscopic observations of two halo M subdwarfs which have H alpha emission lines. We show that in both cases close companions are the most likely cause of the chromospheric activity in these old, metal-poor stars. We argue that Gl 781 A's unseen companion is most likely a cool helium white dwarf. Gl 455 is a near-equal-mass M subdwarf (sdM) system. Gl 781 A is rapidly rotating with v sin i = 30 km/s. The properties of the chromospheres and X-ray coronae of these systems are compared to M dwarfs with emission (dMe). The X-ray hardness ratios and optical chromospheric lines emission ratios are consistent with those seen in dMe stars. Comparison to active near-solar metallicity stars indicates that despite their low metallicity ([m/H] = -1/2), the sdMe stars are roughly as active in both X-rays and chromospheric emission. Measured by L_X/L_bol, the activity level of Gl 781 A is no more than a factor of 2.5 subluminous with respect to near-solar metallicity stars.Comment: 16 pages including 1 figure, AASTeX, to appear in May 1998 A.

    Tracking Down a Critical Halo Mass for Killing Galaxies through the Growth of the Red-Sequence

    Full text link
    Red-sequence galaxies record the history of terminated star-formation in the Universe and can thus provide important clues to the mechanisms responsible for this termination. We construct composite samples of published cluster and field galaxy photometry in order to study the build-up of galaxies on the red-sequence, as parameterised by the dwarf-to-giant ratio (DGR). We find that the DGR in clusters is higher than that of the field at all redshifts, implying that the faint end of the red-sequence was established first in clusters. We find that the DGR evolves with redshift for both samples, consistent with the ``down-sizing'' picture of star formation. We examine the predictions of semi-analytic models for the DGR and find that neither the magnitude of its environmental dependence nor its evolution is correctly predicted in the models. Red-sequence DGRs are consistently too high in the models, the most likely explanation being that the strangulation mechanism used to remove hot gas from satellite galaxies is too efficient. Finally we present a simple toy model including a threshold mass, below which galaxies are not strangled, and show that this can predict the observed evolution of the field DGR.Comment: MNRAS letters accepted. 5 pages, 1 figur

    The influence of baryons on the mass distribution of dark matter halos

    Get PDF
    Using a set of high-resolution N-body/SPH cosmological simulations with identical initial conditions but run with different numerical setups, we investigate the influence of baryonic matter on the mass distribution of dark halos when radiative cooling is NOT included. We compare the concentration parameters of about 400 massive halos with virial mass from 101310^{13} \Msun to 7.1Ă—10147.1 \times 10^{14} \Msun. We find that the concentration parameters for the total mass and dark matter distributions in non radiative simulations are on average larger by ~3% and 10% than those in a pure dark matter simulation. Our results indicate that the total mass density profile is little affected by a hot gas component in the simulations. After carefully excluding the effects of resolutions and spurious two-body heating between dark matter and gas particles, we conclude that the increase of the dark matter concentration parameters is due to interactions between baryons and dark matter. We demonstrate this with the aid of idealized simulations of two-body mergers. The results of individual halos simulated with different mass resolutions show that the gas profiles of densities, temperature and entropy are subjects of mass resolution of SPH particles. In particular, we find that in the inner parts of halos, as the SPH resolution increases the gas density becomes higher but both the entropy and temperature decrease.Comment: 8 pages, 6 figures, 1 table, ApJ in press (v652n1); updated to match with the being published versio
    • …
    corecore