241 research outputs found

    Elasticity of spheres with buckled surfaces

    Full text link
    The buckling instabilities of core-shell systems, comprising an interior elastic sphere, attached to an exterior shell, have been proposed to underlie myriad biological morphologies. To fully discuss such systems, however, it is important to properly understand the elasticity of the spherical core. Here, by exploiting well-known properties of the solid harmonics, we present a simple, direct method for solving the linear elastic problem of spheres and spherical voids with surface deformations, described by a real spherical harmonic. We calculate the corresponding bulk elastic energies, providing closed-form expressions for any values of the spherical harmonic degree (l), Poisson ratio, and shear modulus. We find that the elastic energies are independent of the spherical harmonic index (m). Using these results, we revisit the buckling instability experienced by a core-shell system comprising an elastic sphere, attached within a membrane of fixed area, that occurs when the area of the membrane sufficiently exceeds the area of the unstrained sphere [C. Fogle, A. C. Rowat, A. J. Levine and J. Rudnick, Phys. Rev. E 88, 052404 (2013)]. We determine the phase diagram of the core-shell sphere's shape, specifying what value of l is realized as a function of the area mismatch and the core-shell elasticity. We also determine the shape phase diagram for a spherical void bounded by a fixed-area membrane.Comment: 18 pages, 10 figures, submitted to Physical Review

    Short Term Effects of Hurricane Irma and Cyanobacterial Blooms On Ammonium Cycling Along a Freshwater-Estuarine Continuum In South Florida

    Get PDF
    Lacustrine and coastal systems are vulnerable to the increasing number and intensity of tropical storms driven by climate change. Strong winds associated with tropical storms can mobilize nutrients in sediments and alter nitrogen and phosphorus cycling, leading to amplification of preexisting conditions, such as eutrophication and cyanobacterial blooms (cyanoHABs). In 2016, Florida declared a State of Emergency within and downstream of Lake Okeechobee (LO) due to toxic cyanobacterial blooms (primarily Microcystis). The blooms originated in LO, but flood control measures released water from LO to the brackish St. Lucie Estuary (SLE). In September 2017, Hurricane Irma traversed the Florida peninsula with sustained winds exceeding 160 km h–1, generating torrential rains over the watershed. We quantified ammonium (NH4+) regeneration and potential uptake rates, and Microcystis toxin gene (mcyD) abundance in LO and SLE during the massive bloom in July 2016, the bloom in August 2017 (2 weeks before Irma), and 10 days after Hurricane Irma landfall. In 2016, cyanoHABs were present in both LO and SLE, and potential NH4+ uptake rates were high in both systems. In 2017, the bloom was constrained to LO, potential NH4+ uptake rates in LO exceeded those in SLE, and mcyD gene abundance was greater in LO than SLE. Post Hurricane Irma, potential NH4+ uptake rates decreased significantly in LO and SLE, while mcyD gene abundance decreased in LO and increased slightly in SLE. Average NH4+ regeneration rates could support 25–40% of water column potential NH4+ demand in the lake and, when extrapolated to the entire LO water column, exceeded external nitrogen loading. These results emphasize the importance of internal NH4+ recycling for bloom expansion and toxicity in the lake and downstream estuaries. In 2018, the cyanobacterial bloom in the Okeechobee region was one of the largest recorded and is presumed to be driven by the aftermath of Hurricane Irma. Large-scale blooms have also been observed in SLE, likely due to LO flushing and decreased salinity post-hurricane. Thus, results from this study support predictions that increased frequency and strength of tropical storms will lead to more intense blooms in aquatic systems

    Atomic Representations of Local and Global Chemistry in Complex Alloys

    Full text link
    The exceptional properties observed in complex concentrated alloys (CCAs) arise from the interplay between crystalline order and chemical disorder at the atomic scale, complicating a unique determination of properties. In contrast to conventional alloys, CCA properties emerge as distributions due to varying local chemical environments and the specific scale of measurement. Currently there are few ways to quantitatively define, track, and compare local alloy compositions (versus a global label, i.e. equiatomic) contained in a CCA. Molecular dynamics is used here to build descriptive metrics that connect a global alloy composition to the diverse local alloy compositions that define it. A machine-learned interatomic potential for MoNbTaTi is developed and we use these metrics to investigate how property distributions change with excursions in global-local composition space. Short-range order is examined through the lens of local chemistry for the equiatomic composition, demonstrating stark changes in vacancy formation energy with local chemistry evolution.Comment: Version 2: editing and figure improvements, overall content unchanged. 15 pages, 6 main figures, 1 supplemental figur

    Chemical order transitions within extended interfacial segregation zones in NbMoTaW

    Full text link
    Interfacial segregation and chemical short-range ordering influence the behavior of grain boundaries in complex concentrated alloys. In this study, we use atomistic modeling of a NbMoTaW refractory complex concentrated alloy to provide insight into the interplay between these two phenomena. Hybrid Monte Carlo and molecular dynamics simulations are performed on columnar grain models to identify equilibrium grain boundary structures. Our results reveal extended near-boundary segregation zones that are much larger than traditional segregation regions, which also exhibit chemical patterning that bridges the interfacial and grain interior regions. Furthermore, structural transitions pertaining to an A2-to-B2 transformation are observed within these extended segregation zones. Both grain size and temperature are found to significantly alter the widths of these regions. Analysis of chemical short-range order indicates that not all pairwise elemental interactions are affected by the presence of a grain boundary equally, as only a subset of elemental clustering types are more likely to reside near certain boundaries. The results emphasize the increased chemical complexity that is associated with near-boundary segregation zones and demonstrate the unique nature of interfacial segregation in complex concentrated alloys

    An Assessment of Blood Vessel Remodeling of Nanofibrous Poly(ε-Caprolactone) Vascular Grafts in a Rat Animal Model

    Get PDF
    The development of an ideal vascular prosthesis represents an important challenge in terms of the treatment of cardiovascular diseases with respect to which new materials are being considered that have produced promising results following testing in animal models. This study focuses on nanofibrous polycaprolactone-based grafts assessed by means of histological techniques 10 days and 6 months following suturing as a replacement for the rat aorta. A novel stereological approach for the assessment of cellular distribution within the graft thickness was developed. The cellularization of the thickness of the graft was found to be homogeneous after 10 days and to have changed after 6 months, at which time the majority of cells was discovered in the inner layer where the regeneration of the vessel wall was found to have occurred. Six months following implantation, the endothelialization of the graft lumen was complete, and no vasa vasorum were found to be present. Newly formed tissue resembling native elastic arteries with concentric layers composed of smooth muscle cells, collagen, and elastin was found in the implanted polycaprolactone-based grafts. Moreover, the inner layer of the graft was seen to have developed structural similarities to the regular aortic wall. The grafts appeared to be well tolerated, and no severe adverse reaction was recorded with the exception of one case of cartilaginous metaplasia close to the junctional suture

    SOD2 Deficiency in Cardiomyocytes Defines Defective Mitochondrial Bioenergetics as a Cause of Lethal Dilated Cardiomyopathy

    Get PDF
    Electrophilic aldehyde (4-hydroxynonenal; 4-HNE), formed after lipid peroxidation, is a mediator of mitochondrial dysfunction and implicated in both the pathogenesis and the progression of cardiovascular disease. Manganese superoxide dismutase (MnSOD), a nuclear-encoded antioxidant enzyme, catalyzes the dismutation of superoxide radicals (O2•-) in mitochondria. To study the role of MnSOD in the myocardium, we generated a cardiomyocyte-specific SOD2 (SOD2Δ) deficient mouse strain. Unlike global SOD2 knockout mice, SOD2Δ mice reached adolescence; however, they die at ~4 months of age due to heart failure. Ultrastructural analysis of SOD2Δ hearts revealed altered mitochondrial architecture, with prominent disruption of the cristae and vacuole formation. Noninvasive echocardiographic measurements in SOD2Δ mice showed dilated cardiomyopathic features such as decreased ejection fraction and fractional shortening along with increased left ventricular internal diameter. An increased incidence of ventricular tachycardia was observed during electrophysiological studies of the heart in SOD2Δ mice. Oxidative phosphorylation (OXPHOS) measurement using a Seahorse XF analyzer in SOD2Δ neonatal cardiomyocytes and adult cardiac mitochondria displayed reduced O2 consumption, particularly during basal conditions and after the addition of FCCP (H+ ionophore/uncoupler), compared to that in SOD2fl hearts. Measurement of extracellular acidification (ECAR) to examine glycolysis in these cells showed a pattern precisely opposite that of the oxygen consumption rate (OCR) among SOD2Δ mice compared to their SOD2fl littermates. Analysis of the activity of the electron transport chain complex identified a reduction in Complex I and Complex V activity in SOD2Δ compared to SOD2fl mice. We demonstrated that a deficiency of SOD2 increases reactive oxygen species (ROS), leading to subsequent overproduction of 4-HNE inside mitochondria. Mechanistically, proteins in the mitochondrial respiratory chain complex and TCA cycle (NDUFS2, SDHA, ATP5B, and DLD) were the target of 4-HNE adduction in SOD2Δ hearts. Our findings suggest that the SOD2 mediated 4-HNE signaling nexus may play an important role in cardiomyopathy

    The Host Galaxies of Gamma-Ray Bursts I: ISM Properties of Ten Nearby Long-Duration GRB Hosts

    Full text link
    We present the first observations from a large-scale survey of nearby (z < 1) long-duration gamma-ray burst (LGRB) host galaxies, which consist of eight rest-frame optical spectra obtained at Keck and Magellan. Along with two host galaxy observations from the literature, we use optical emission line diagnostics to determine metallicities, ionization parameters, young stellar population ages, and star formation rates. We compare the LGRB host environments to a variety of local and intermediate-redshift galaxy populations, as well as the newest grid of stellar population synthesis and photoionization models generated with the Starburst99/Mappings codes. With these comparisons we investigate whether the GRB host galaxies are consistent with the properties of the general galaxy population, and therefore whether they may be used as reliable tracers of star formation. We find that LGRB host galaxies generally have low-metallicity ISM environments out to z ~ 1. The ISM properties of our GRB hosts, including metallicity, ionization parameter, and young stellar population age, are significantly different from the general galaxy population, host galaxies of nearby broad-lined Type Ic supernovae, and nearby metal-poor galaxies.Comment: 29 pages, 19 figures, 5 tables, accepted for publication in A
    • …
    corecore