27 research outputs found

    Antiferromagnetic real-space configuration probed by x-ray orbital angular momentum phase dichroism

    Full text link
    X-ray beams with orbital angular momentum (OAM) are an up-and-coming tool for x-ray characterization techniques. Beams with OAM have an azimuthally varying phase that leads to a gradient of the light field. New material properties can be probed by utilizing the unique phase structure of an OAM beam. Here, we demonstrate a novel type of phase dichroism in resonant diffraction from an artificial antiferromagnet with a topological defect. The scattered OAM beam has circular dichroism whose sign is coupled to the phase of the beam, which reveals the real-space configuration of the antiferromagnetic ground state. Thermal cycling of the artificial antiferromagnet can change the ground state, as indicated by the changing phase dichroism. These results exemplify the potential of OAM beams to probe matter in a way that is inaccessible using typical x-ray techniques

    Chiral structures of electric polarization vectors quantified by X-ray resonant scattering

    Get PDF
    Resonant elastic X-ray scattering (REXS) offers a unique tool to investigate solid-state systems providing spatial knowledge from diffraction combined with electronic information through the enhanced absorption process, allowing the probing of magnetic, charge, spin, and orbital degrees of spatial order together with electronic structure. A new promising application of REXS is to elucidate the chiral structure of electrical polarization emergent in a ferroelectric oxide superlattice in which the polarization vectors in the REXS amplitude are implicitly described through an anisotropic tensor corresponding to the quadrupole moment. Here, we present a detailed theoretical framework and analysis to quantitatively analyze the experimental results of Ti L-edge REXS of a polar vortex array formed in a PbTiO3/SrTiO3 superlattice. Based on this theoretical framework, REXS for polar chiral structures can become a useful tool similar to x-ray resonant magnetic scattering (XRMS), enabling a comprehensive study of both electric and magnetic REXS on the chiral structures.K.T.K., S.Y.P., and D.R.L acknowledge financial support by National Research Foundation of Korea (Grant No. NRF-2020R1A2C1009597, NRF-2019K1A3A7A09033387, and NRF-2021R1C1C1009494). M.M. and R.R. were supported by the Quantum Materials program from the Office of Basic Energy Sciences, US Department of Energy (DE-AC02-05CH11231). V.A.S., J.W.F., and L.W.M. acknowledge the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC-0012375 for support to study complex-oxide heterostructure with X-ray scattering. L.W.M. and R.R. acknowledge partial support from the Army Research Office under the ETHOS MURI via cooperative agreement W911NF-21-2-0162. J.Í. acknowledges financial support from the Luxembourg National Research Fund through project FNR/C18/MS/12705883/REFOX. M.A.P.G. was supported by the Czech Science Foundation (project no. 19-28594X). Diamond Light Source, UK, is acknowledged for beamtime on beamline I10 under proposal NT24797. Use of the Advanced Light Source, Lawrence Berkeley National Laboratory, was supported by the U.S. Department of Energy (DOE) under contract no. DE-AC02-05CH11231, and use of the Advanced Photon Source was supported by DOE’s Office of Science under contract DE-AC02-06CH11357

    Structural chirality of polar skyrmions probed by resonant elastic x-ray scattering

    Get PDF
    An escalating challenge in condensed-matter research is the characterization of emergent order-parameter nanostructures such as ferroelectric and ferromagnetic skyrmions. Their small length scales coupled with complex, three-dimensional polarization or spin structures makes them demanding to trace out fully. Resonant elastic x-ray scattering (REXS) has emerged as a technique to study chirality in spin textures such as skyrmions and domain walls. It has, however, been used to a considerably lesser extent to study analogous features in ferroelectrics. Here, we present a framework for modeling REXS from an arbitrary arrangement of charge quadrupole moments, which can be applied to nanostructures in materials such as ferroelectrics. With this, we demonstrate how extended reciprocal space scans using REXS with circularly polarized x rays can probe the three-dimensional structure and chirality of polar skyrmions. Measurements, bolstered by quantitative scattering calculations, show that polar skyrmions of mixed chirality coexist, and that REXS allows valuation of relative fractions of right- and left-handed skyrmions. Our quantitative analysis of the structure and chirality of polar skyrmions highlights the capability of REXS for establishing complex topological structures toward future application exploits.M. R. M. and R. R. were supported by the Quantum Materials program from the Office of Basic Energy Sciences, U.S. Department of Energy (DE-AC02-05CH11231). V. A. S., J. W. F., and L. W. M. acknowledge the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award No. DE-SC-0012375 for support to study complex-oxide heterostructure with x-ray scattering. L. W. M. and R. R. acknowledge partial support from the Army Research Office under the ETHOS MURI via cooperative agreement W911NF-21-2-0162. J. Í. acknowledge financial support from the Luxembourg National Research Fund through project FNR/C18/MS/12705883/REFOX. Diamond Light Source, UK, is acknowledged for beam time on beam line I10 under proposal NT24797. K. T. K., S. Y. P., and D. R. L. acknowledge support from the National Research Foundation of Korea, under Grant No. NRF-2020R1A2C1009597, NRF-2019K1A3A7A09033387, and NRF-2021R1C1C1009494. M. A. P. G. acknowledges support by the Czech Science Foundation (Project No. 19-28594X). This research used resources of the Advanced Light Source, a U.S. DOE Office of Science User Facility under Contract No. DE-AC02-05CH11231. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility at Argonne National Laboratory and is based on research supported by the U.S. DOE Office of Science-Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. S. D. gratefully acknowledges a start-up grant from Indian Institute of Science, Bangalore, India. F. G.-O., P. G.-F., and J. J. acknowledge financial support from Grant No. PGC2018-096955-B-C41 funded by MCIN/AEI/10.13039/501100011033 and by ERDF “A way of making Europe,” by the European Union. F. G.-O. acknowledges financial support from Grant No. FPU18/04661 funded by MCIN/AEI/10.13039/50110001103

    The Specification and Global Reprogramming of Histone Epigenetic Marks during Gamete Formation and Early Embryo Development in C. elegans

    Get PDF
    In addition to the DNA contributed by sperm and oocytes, embryos receive parent-specific epigenetic information that can include histone variants, histone post-translational modifications (PTMs), and DNA methylation. However, a global view of how such marks are erased or retained during gamete formation and reprogrammed after fertilization is lacking. To focus on features conveyed by histones, we conducted a large-scale proteomic identification of histone variants and PTMs in sperm and mixed-stage embryo chromatin from C. elegans, a species that lacks conserved DNA methylation pathways. The fate of these histone marks was then tracked using immunostaining. Proteomic analysis found that sperm harbor ?2.4 fold lower levels of histone PTMs than embryos and revealed differences in classes of PTMs between sperm and embryos. Sperm chromatin repackaging involves the incorporation of the sperm-specific histone H2A variant HTAS-1, a widespread erasure of histone acetylation, and the retention of histone methylation at sites that mark the transcriptional history of chromatin domains during spermatogenesis. After fertilization, we show HTAS-1 and 6 histone PTM marks distinguish sperm and oocyte chromatin in the new embryo and characterize distinct paternal and maternal histone remodeling events during the oocyte-to-embryo transition. These include the exchange of histone H2A that is marked by ubiquitination, retention of HTAS-1, removal of the H2A variant HTZ-1, and differential reprogramming of histone PTMs. This work identifies novel and conserved features of paternal chromatin that are specified during spermatogenesis and processed in the embryo. Furthermore, our results show that different species, even those with diverged DNA packaging and imprinting strategies, use conserved histone modification and removal mechanisms to reprogram epigenetic information

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Perspective: Emergent topologies in oxide superlattices

    Get PDF
    The ability to synthesize high-quality, complex-oxide heterostructures has created a veritable playground in which to explore emergent phenomena and exotic phases which arise from the interplay of spin, charge, orbital, and lattice degrees of freedom. Of particular interest is the creation of artificial heterostructures and superlattices built from two or more materials. Through such approaches, it is possible to observe new phases and phenomena that are not present in the parent materials alone. This is especially true in ferroelectric materials where the appropriate choice of superlattice constituents can lead to structures with complex phase diagrams and rich physics. In this article, we review and explore future directions in such ferroic superlattices wherein recent studies have revealed complex emergent polarization topologies, novel states of matter, and intriguing properties that arise from our ability to manipulate materials with epitaxial strain, interfacial coupling and interactions, size effects, and more. We focus our attention on recent work in (PbTiO3)n/(SrTiO3)n superlattices wherein exotic polar-vortex structures have been observed. We review the history of these observations and highlights of recent studies and conclude with an overview and prospectus of how the field may evolve in the coming years

    Emergence of the Vortex State in Confined Ferroelectric Heterostructures

    No full text
    The manipulation of charge and lattice degrees of freedom in atomically precise, low-dimensional ferroelectric superlattices can lead to exotic polar structures, such as a vortex state. The role of interfaces in the evolution of the vortex state in these superlattices (and the associated electrostatic and elastic boundary conditions they produce) has remained unclear. Here, the toroidal state, arranged in arrays of alternating clockwise/counterclockwise polar vortices, in a confined SrTiO3 /PbTiO3 /SrTiO3 trilayer is investigated. By utilizing a combination of transmission electron microscopy, synchrotron-based X-ray diffraction, and phase-field modeling, the phase transition as a function of layer thickness (number of unit cells) demonstrates how the vortex state emerges from the ferroelectric state by varying the thickness of the confined PbTiO3 layer. Intriguingly, the vortex state arises at head-to-head domain boundaries in ferroelectric a1 /a2 twin structures. In turn, by varying the total number of PbTiO3 layers (moving from trilayer to superlattices), it is possible to manipulate the long-range interactions among multiple confined PbTiO3 layers to stabilize the vortex state. This work provides a new understanding of how the different energies work together to produce this exciting new state of matter and can contribute to the design of novel states and potential memory applications
    corecore