5 research outputs found

    Peripheral blood-derived mesenchymal stem cells demonstrate immunomodulatory potential for therapeutic use in horses

    Get PDF
    Previously, we showed that mesenchymal stem cells (MSC) can be mobilized into peripheral blood using electroacupuncture (EA) at acupoints, LI-4, LI-11, GV-14, and GV-20. The purpose of this study was to determine whether EA-mobilized MSC could be harvested and expanded in vitro to be used as an autologous cell therapy in horses. Peripheral blood mononuclear cells (PBMC) isolated from young and aged lame horses (n = 29) showed a marked enrichment for MSCs. MSC were expanded in vitro (n = 25) and administered intravenously at a dose of 50 x 106 (n = 24). Treatment resulted in significant improvement in lameness as assessed by the American Association of Equine Practitioners (AAEP) lameness scale (n = 23). MSCs exhibited immunomodulatory function by inhibition of lymphocyte proliferation and induction of IL-10. Intradermal testing showed no immediate or delayed immune reactions to MSC (1 x 106 to 1 x 104). In this study, we demonstrated an efficient, safe and reproducible method to mobilize and expand, in vitro, MSCs in sufficiently high concentrations for therapeutic administration. We confirm the immunomodulatory function of these cells in vitro. This non-pharmacological and non-surgical strategy for stem cell harvest has a broad range of biomedical applications and represents an improved clinically translatable and economical cell source for humans

    Novel Methods to Mobilize, Isolate, and Expand Mesenchymal Stem Cells

    No full text
    Numerous studies demonstrate the essential role of mesenchymal stem cells (MSCs) in the treatment of metabolic and inflammatory diseases, as these cells are known to modulate humoral and cellular immune responses. In this manuscript, we efficiently present two novel approaches to obtain MSCs from equine or human sources. In our first approach, we used electro-acupuncture as previously described by our group to mobilize MSCs into the peripheral blood of horses. For equine MSC collection, culture, and expansion, we used the Miltenyi Biotec CliniMACS Prodigy system of automated cell manufacturing. Using this system, we were able to generate appoximately 100 MSC colonies that exhibit surface marker expression of CD105 (92%), CD90 (85%), and CD73 (88%) within seven days of blood collection. Our second approach utilized the iPSC embryoid bodies from healthy or diabetic subjects where the iPSCs were cultured in standard media (endothelial + mesoderm basal media). After 21 days, the cells were FACS sorted and exhibited surface marker expression of CD105, CD90, and CD73. Both the equine cells and the human iPSC-derived MSCs were able to differentiate into adipogenic, osteogenic, and chondrogenic lineages. Both methods described simple and highly efficient methods to produce cells with surface markers phenotypically considered as MSCs and may, in the future, facilitate rapid production of MSCs with therapeutic potential

    The Role of Growth Factors in Cartilage Repair

    No full text
    corecore