9,672 research outputs found

    Gate-tunable bandgap in bilayer graphene

    Full text link
    The tight-binding model of bilayer graphene is used to find the gap between the conduction and valence bands, as a function of both the gate voltage and as the doping by donors or acceptors. The total Hartree energy is minimized and the equation for the gap is obtained. This equation for the ratio of the gap to the chemical potential is determined only by the screening constant. Thus the gap is strictly proportional to the gate voltage or the carrier concentration in the absence of donors or acceptors. In the opposite case, where the donors or acceptors are present, the gap demonstrates the asymmetrical behavior on the electron and hole sides of the gate bias. A comparison with experimental data obtained by Kuzmenko et al demonstrates the good agreement.Comment: 6 pages, 5 figure

    Active financial analysis: stimulating engagement using Bloomberg for introductory finance students

    Get PDF
    There is increasing interest in the adoption of real-world interactive and participative learning techniques within economics and finance teaching through the use of trading room software. Previous research suggests that the integration of trading room software can improve knowledge development and performance. However, the time constraints of providing software training and requirements for foundation knowledge of basic maths and economics has restricted the adoption of trading room software to advanced courses. This paper outlines how the Bloomberg Professional Software was used in an introductory finance course and analyses student engagement, learning and attainment using feedback and performance data. We find that students valued the novelty of Bloomberg as part of a mix of different learning activities which facilitated the practical application of theory. Results also indicate that the alignment of teaching, learning and assessment promotes deeper engagement, and is associated with higher attainment. We demonstrate that trading room software can be effectively used in introductory courses to enhance the student experience and deepen understanding

    Book reviews

    Get PDF
    Teaching/Communication/Extension/Profession,

    Asynchronous sampling for decentralized periodic event-triggered control

    Get PDF
    Decentralized periodic event-triggered control(DPETC) strategies are an attractive solution for wireless cyber-physical systems where resources such as network bandwidthand sensor power are scarce. This is because these strategieshave the advantage of preventing unnecessary data transmis-sions and therefore reduce bandwidth and energy requirements,however the sensor sampling regime remains synchronous.Typically the action of sampling leads almost immediately toa transmission on an event being detected. If the sampling issynchronous, multiple transmission requests may be raised atthe same time which further leads to bursty traffic patterns.Bursty traffic patterns are critical to the DPETC systemsperformance as the probability of collisions and the amount ofrequested bandwidth resources become high ultimately causingdelays. In this paper, we propose an asynchronous samplingscheme for DPETC. The scheme ensures that at each samplingtime, no more than one transmission request can be generatedwhich prevents the occurrence of network traffic collision.At the same time, for the DPETC system with asynchronoussampling a pre-designed global exponential stability andL2-gain performance can still be guaranteed. We illustrate theeffectiveness of the approach through a numerical example

    Threat modeling for communication security of IoT-enabled digital logistics

    Get PDF
    The modernization of logistics through the use of Wireless Sensor Network (WSN) Internet of Things (IoT) devices promises great efficiencies. Sensor devices can provide real-time or near real-time condition monitoring and location tracking of assets during the shipping process, helping to detect delays, prevent loss, and stop fraud. However, the integration of low-cost WSN/IoT systems into a pre-existing industry should first consider security within the context of the application environment. In the case of logistics, the sensors are mobile, unreachable during the deployment, and accessible in potentially uncontrolled environments. The risks to the sensors include physical damage, either malicious/intentional or unintentional due to accident or the environment, or physical attack on a sensor, or remote communication attack. The easiest attack against any sensor is against its communication. The use of IoT sensors for logistics involves the deployment conditions of mobility, inaccesibility, and uncontrolled environments. Any threat analysis needs to take these factors into consideration. This paper presents a threat model focused on an IoT-enabled asset tracking/monitoring system for smart logistics. A review of the current literature shows that no current IoT threat model highlights logistics-specific IoT security threats for the shipping of critical assets. A general tracking/monitoring system architecture is presented that describes the roles of the components. A logistics-specific threat model that considers the operational challenges of sensors used in logistics, both malicious and non-malicious threats, is then given. The threat model categorizes each threat and suggests a potential countermeasure
    • ā€¦
    corecore