
MacFarlane, A., McCann, J. A. & Robertson, S. E. (2007). Parallel methods for the update of

partitioned inverted files. Aslib Proceedings; New Information Perspectives, 59(4-5), pp. 367-396.

doi: 10.1108/00012530710817582

City Research Online

Original citation: MacFarlane, A., McCann, J. A. & Robertson, S. E. (2007). Parallel methods for

the update of partitioned inverted files. Aslib Proceedings; New Information Perspectives, 59(4-5),

pp. 367-396. doi: 10.1108/00012530710817582

Permanent City Research Online URL: http://openaccess.city.ac.uk/4456/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/29017654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

 1

Parallel methods for the update of partitioned inverted files

A. MacFarlane
School of Informatics, City University London, UK

J.A. McCann
Department of Computing, Imperial College London, UK

S.E. Robertson
Microsoft Research Ltd, Cambridge, UK

Abstract
Purpose – An issue which tends to be ignored in information retrieval is the issue of
updating inverted files. This is largely because inverted files were devised to provide
fast query service, and much work has been done with the emphasis strongly on
queries. In this paper we study the effect of using parallel methods for the update of
inverted files in order to reduce costs, by looking at two types of partitioning for
inverted files: document identifier and term identifier.
Design/methodology/approach – Raw update service and update with query service
are studied with these partitioning schemes using an incremental update strategy. We
use standard measures used in parallel computing such as speedup to examine the
computing results and also the costs of reorganising indexes while servicing
transactions.
Findings – Empirical results show that for both transaction processing and index
reorganisation the document identifier method is superior. However, there is evidence
that the term identifier partitioning method could be useful in a concurrent transaction
processing context.
Practical implications – There is an increasing need to service updates which is now
becoming a requirement of inverted files (for dynamic collections such as the Web),
demonstrating that a shift in requirements of inverted file maintenance is needed from
the past.
Originality/value – The paper is of value to database administrators who manage
large-scale and dynamic text collections, and who need to use parallel computing to
implement their text retrieval services.
Keywords Information retrieval, Parallel programming, Inverted files
Paper type Research paper

1. Introduction
One of the most neglected areas in information retrieval is the issue of servicing
updates to inverted files. In most applications this is understandable given that some
databases will not be updated very frequently: for example, Dialog and DataStar have
databases which are updated weekly, monthly quarterly or even yearly (Thomson
Dialog, 2005). However, some applications such as web search engines or News
services like Reuters could have updates arriving 24 hours a day, and there is no time
when the system could be taken down and the updates serviced in a batch. Updating
inverted files is very expensive and periodically requires the re-indexing of the whole

 2

database. It is therefore becoming increasingly important to examine the impact of
update and query services on inverted files. In this paper we describe the update
mechanism for a Parallel text retrieval system, PLIERS, on two different types of
partitioning methods: term identifier partitioning (TermId) where each term, with all
its associated postings is assigned to a single fragment (and therefore information
about any document is distributed among fragments); and document identifier
partitioning (DocId) where the reverse is the case.

2. Experimental methodology
Much of the previous work in the area of inverted file maintenance (Reddaway, 1991;
Shoens et al., 1994; Clark and Cormack, 1995; Brown et al., 1994) has advocated the
use of buffering updates to save on Input/Output. Some argue that to update the index
for each individual arriving document is inefficient (Shoens, et al., 1994) but use a
synthetic workload performance analysis to support their arguments. We attempt to
simulate a persistent service for updates without coding a complete transaction
service, accepting that it is better to wait a little before updating an index. To do this
we keep an in-core buffer to which updates are added when they are received. When
this buffer is full, we initiate an index reorganisation merging the in-core update index
with the index kept on disk. In order to do this we use the following strategy:

1. Read in inverted list from disk.
2. Add new postings to inverted list.
3. Save the new postings to disk to a temporary postings file.

As we are unlikely to be able to keep the dictionary in-core, we keep a subset of the
keywords in memory, with each element of the subset a header of a keyword block
held on disk. All hit keyword blocks are saved to a temporary Keyword file for
realism. The advantage of this method is that we can do a realistic disk re-organisation
simulation without the need for expensive rollbacks in order to conduct repeated
experiments on the same data set. We do not attempt to reorganise the whole index as
we assume that a large chunk of the database will never be referenced by incoming
updates. The transaction we refer to as updates are collection updates or document
insertions: we do not address the issue of document removals or document changes.
Our assumption is that text collections are in the main archival. Our priority is to try
and keep the index in a state that would allow us to service fast query processing. We
do, however, allow the service of transactions while the reorganisation of the index is
being done: there is a strict interleaving between the reorganisation of a term and
transaction service to prevent concurrency problems. There may therefore be some
delays to transactions while a reorganisation of the index is going on.

A number of issues have not been addressed, such as simultaneous update and query
processing together with concurrency control due to time constraints. However, we
recognise the importance of those issues and deal with them theoretically elsewhere
(MacFarlane et al., 1996). The document availability semantics we use is Late
Availability which is defined by MacFarlane and colleagues (1996). A survey of
strategies for updating inverted files is available in Zobel and Moffat (2006).

 3

3. Transaction topologies
Given that we want to service search and updates simultaneously, the transaction
topology cannot differ too much from the search topology described elsewhere
(MacFarlane et al., 2000). We therefore define top and leaf nodes which can handle
both search operations and the update operations implemented. We describe the
additional functionality needed by the nodes to support update operations above.
Figure 1 shows an example of transaction topology with the service of updates.

Take in Figure 1. Example of transaction topology configuration

3.1 Top node
The top node being the interface to the topology, accepts new documents, breaks them
down into their constituent words, and sends the index information to the relevant
inverted file fragment. The main issue here is that the top node must know what type
of partitioning method being used in order to send data to fragments accordingly. For
example, in TermId partitioning a bucket of words will be formed for each fragment
of the inverted file. These can be sent directly to the fragments. However, with DocId
partitioning, a decision must be made as to how new documents are allocated to the
fragments. We make the assumption that over a given period of time incoming
documents that are distributed in a “round robin” fashion will give each fragment
roughly the same amount of data, although it is unlikely to be evenly distributed. We
therefore assign new document to fragments using a “round robin” distribution
method when document identifier partitioning is used. For both types of partitioning
method a confirmation of update completion must be received before a commit notice
is sent to the client.

3.2 Leaf node
The leaf node receives index data and merges it with the fragment index data handled
by that particular leaf node. This sequential process is identical to that described in
another paper by MacFarlane and colleagues (2005). Some collection statistics and
document data must be shared amongst leaf nodes (e.g., collection size and document
length). Each leaf has a document map structure which records such information.
When a search transaction is received by the leaf, both the index and the in-core buffer
are searched. If a reorganisation of the index is initiated new updates are added to a
separate temporary buffer: this is searched as well if new queries are received by the
leaf. When the reorganisation is complete this temporary buffer becomes the main
buffer.

4. Software and hardware used
PLIERS (ParaLLel Informaton rEtrieval Rearch System) has been developed at City
University using ideas from Okapi to investigate the use of parallelism in IR. PLIERS
is designed to run on several parallel architectures and is currently implemented on
those which use Sun Sparc, DEC Alpha and Pentium PII processors. The results
presented in this paper were obtained on 8 nodes of a 12 node AP3000 at the
Australian National University, Canberra. Each node has its own local disk: the

 4

shared nothing architecture (DeWitt and Gray, 1992) is used by PLIERS. The
Fujistsu AP3000 is a distributed memory parallel Computer using Ultra 1 processors
running Solaris 2.5.1. Each node has a speed of 167Mhz. The torus network has a top
bandwidth of 200 Mbytes/s per second.

5. Data and settings used
The data used in the experiments was the BASE1 and BASE10 collections, both sub-
sets of the official 100 Gigabyte VLC2 collection (Hawking et al., 1999). The BASE1
is 1 Gigabyte in size, while BASE10 is approximately 10 Gigabytes in size. We use
two types of builds for indexes: distributed builds where text is kept centrally and
distributed to index nodes and local builds where text is physically distributed to
nodes and indexed locally (MacFarlane et al., 2005). For the distributed build method
we use the BASE1 collection only, creating indexes on 1 to 7 processors and servicing
transactions on all of those indexes. Two types of index were built for these
experiments: one set using TermId partitioning and one using DocId partitioning. The
BASE1 and BASE10 collections were used for the local build method, running
queries on 8 nodes: the client and top node had to be placed on the same node as one
leaf. The DocId partition method is used on these experiments. We built one set of
indexes which contained position data and one set without position data for both types
of build methods and both types of partitioning methods (runs with position data are
marked ‘position data’, while those without such data are marked ‘postings only’).

Take in Table I. Details of transaction sets used in experiments

Table I shows the transaction sets used in our experiments. The queries are based on
topics 1 to 450 of the TREC1 to TREC8 ad-hoc tracks: 400 queries in all (the topics
201-250 in TREC4 did not have a title only field in the topics). The terms were
extracted from TREC topic descriptions using an Okapi query generator utility to
produce the final query. The average number of terms per query is 3.46. The
document updates were chosen from a Reuters-22173 collection (Lewis, 2006) not in
the VLC2 set: we refer to this file as REUTERS. We chose this set because we can
guarantee that the data is new to the VLC2 set. The REUTERS file is 1.2 Mb in size
and has 1000 records. We took both these sets and created transaction sets with
differing numbers of updates and queries, varying the number of updates to queries.
We do this at a number of rates ranging from 10 queries per 1 update down to 1 query
per 1.25 updates. We also examine update and query only service. This allows us to
both examine the effect between updates and queries as well as finding a good point
where buffer re-organisation is needed. We apply these transactions to all the indexes
built (described above), both in the presence and absence of an index reorganisation.
All figures produced are averages of 5 runs per experiment. For the one leaf
experiments we use a client/server process. We record the raw index reorganisation
speed to establish the best point to initiate it. We use a number of measures to
examine the results. These are elapsed time in seconds, load imbalance (LI), speedup,
and scaleability for transactions and index reorganisation and transaction throughput
(transactions per hour). Equations for most of these metrics are declared in the
Glossary.

 5

6. Experimental results on transaction processing
We have a number of aspects which we wish to examine by looking at the empirical
results produced. The first of these is the issue of update performance (see section
6.1). Is there a big performance penalty in only allowing one update at a time in the
system? We also need to examine the transactions as a whole looking at aspects such
as the interaction between queries and updates and its impact on performance (see
section 6.2). Both updates and transactions are examined in the presence and absence
of index reorganisation. The performance of index reorganisation is examined in
section 6.3, together with a discussion on a good buffer size for the collections being
examined. A summary of the experimental results is given in section 6.4.

Take in Figure 2. BASE1 [DocId]: average elapsed time in ms for update
transactions (postings only)
Take in Figure 3. BASE1 [TermId]: average elapsed time in ms for update
transactions (postings only)
Take in Figure 4. BASE1 [DocId]: average elapsed time in ms for update
transactions (position data)
Take in Figure 5. BASE1 [TermId]: average elapsed time in ms for update
transactions (position data

6.1 Performance of update transactions
As there is no general criterion for response time for update transactions as there is for
query transactions (Frakes, 1992) we need to define one here. The criterion we use is
that updates should be done within 1/10th of a second (or 100 milliseconds). This
strict criterion is chosen because we want to ensure that queries are not delayed much,
although users who submit documents for update would prefer a fast response. The
elapsed time for update transactions is quite small for most runs (see Figures 2 to 5).
All times are under 100 milliseconds and times do reduce with increasing numbers of
leaf nodes. There are two main observations from this. The first is that update
transaction elapsed times meet our criterion and are therefore acceptable in our terms.
Any delays by blocking other transactions while an update is done are therefore small.
The second is that speedup is found in systems using parallelism, which is surprising
given the restrictions on parallelism with the type of update transaction processing
implemented (see Figures 6 to 9).

Take in Figure 6. BASE1 [DocId]: speedup for update transactions (postings only)
Take in Figure 7. BASE1 [TermId]: speedup for update transactions (postings only)
Take in Figure 8. BASE1 [DocId]: speedup for update transactions (position data)
Take in Figure 9. BASE1 [TermId]: speedup for update transactions (position data)

The results show that DocId partitioning has a much more beneficial effect on elapsed
times than TermId partitioning and the advantage in elapsed time using multiple leaf

 6

nodes is superior with DocId. The reasons for these effects are twofold: memory and
communication. With DocId the increase in memory affects elapsed time positively,
and communication is done with one leaf node only. This memory advantage is offset
with extra communication with TermId as document data must be communicated to
all leaf nodes. It should be noted that most of the conclusions drawn here apply to
updates which record position data. The exception is that TermId partitioning in many
cases does not meet the 100 millisecond criterion together with the single leaf nodes
run (see Figure 5).

Take in Figure 10. BASE1 [DocId]: average elapsed time in ms for update
transactions during index reorganisation (postings only)
Take in Figure 11. BASE1 [TermId]: average elapsed time in ms for update
transactions during index reorganisation (postings only)
Take in Figure 12. BASE1 [DocId]: average elapsed time in ms for update
transactions during index reorganisation (position data)
Take in Figure 13. BASE1 [TermId]: average elapsed time in ms for update
transactions during index reorganisation (position data)

Figures 10 to 13 show the effect of initiating an index reorganisation while serving
update transactions. Elapsed times on both types of partitioning method are increased,
but DocId partitioning is much better able to handle the resource contention than
TermId. In terms of our 100 millisecond criterion, DocId meets our requirement while
TermId partitioning does not. While DocId runs show reduction in elapsed time over
multiple leaf nodes, TermId runs actually record a reduction in performance. The
reason for this is simple: index reorganisation on DocId partitioned inverted file is
done on much shorter lists. Therefore a request for transaction service on TermId
partitioning is more likely to be delayed, hence the increase in percentage terms for
elapsed time over DocId as shown in Figures 14 to 17. With respect to indexes which
contain position data, most runs, apart from a few on DocId partitioning, exceed the
100 millisecond criterion. TermId partitioning runs are particularly badly affected with
some runs registering an increase of around three hundred per cent over elapsed times
when index reorganisation is done.

Take in Figure 14. BASE1 [DocId]: % increase in average elapsed time for update
transactions during index reorganisation (postings only)
Take in Figure 15. BASE 1 [Termld]: % increase in average elapsed time for update
transactions during index reorganisation (postings only)
Take in Figure 16. BASE 1 [Docld] % increase in average elapsed time for update
transactions during index reorganisation (position data)
Take in Figure 17. BASE 1 [Termld]: % increase in average elapsed time for update
transactions during index reorganisation (position data)

Take in Table II. BASE1/BASE10 [DocId]: index update results for update
transactions

 7

Table II shows the details of comparable BASE1 and BASE10 runs using the DocId
partitioning method. It should be noted that BASE10 runs are slightly higher than our
criterion for elapsed times for update. It may not therefore be possible to set such a
strict criterion for larger databases, and we may have to relax our requirements to, say,
a second. All BASE10 elapsed times are under a second, even updates done on
indexes with position data while an index reorganisation is being done. The scalability
for update transactions on the BASE10 collection is very good indeed, particularly for
indexes with postings only data. The scalability reduces while index reorganisation is
being done, but is still good.

6.2 Performance of transactions as a whole
The average elapsed time for transactions as a whole is very good with all times under
a second, including BASE10 experiments. Figures 18 to 21 show average elapsed
times for transactions on the BASE1 collection using all types of indexes and
partitioning methods.

Take in Figure 18. BASE1 [DocId]: transaction average elapsed times in ms
(postings only)
Take in Figure 19. BASE1 [TermId]: transaction average elapsed times in ms
(postings only)
Take in Figure 20. BASE1 [DocId]: transaction average elapsed times in ms
(position data)
Take in Figure 21. BASE1 [TermId]: transaction average elapsed times in ms
(position data)

From these elapsed times it can be seen that there is a reduction in average time when
the number of update transactions is increased and when DocId partitioning is used.
The reduction due to increased level of updates is because updates are smaller in
average time and will reduce the average transaction time. The DocId partitioning
method outperforms TermId quite considerably on any of the transaction sets used.
The performance problem found with runs on TermId partitioning in previous
experiments (MacFarlane et al., 2000) severely affect the overall performance of those
runs. No real speed advantage by the use of parallelism is demonstrated in any of the
TermId partitioning experiments. In fact slowdown is registered for all parallel runs on
indexes with postings only data (see Figure 23). Speed advantage on indexes
containing position data is recorded, but is very slight (see Figure 25). With DocId
partitioning we do gain speed advantage using parallelism (see Figures 22 and 24), but
the proportion of updates in the transaction set may actually increase the average
elapsed time when more leaf nodes are used (see Figures 18 and 20). The level of
parallelism which can be successfully deployed depends on the balance in time
between updates and queries, at the point where gain in parallelism is outweighed by
loss in servicing updates.

Take in Figure 22. BASE 1 [Docld]: speedup for all transactions (postings only)

 8

Take in Figure 23. BASE 1 [Termld]: speedup for all transactions (postings only)
Take in Figure 24. BASE 1 [Docld]: speedup for all transactions (position data)
Take in Figure 25. BASE 1 [Termld]: speedup for all transactions (position data)

Figures 26 to 29 show the effect of index reorganisation on transactions serviced over
BASE1 collection. The results show that DocId partitioning outperforms TermId if an
elapsed time criterion is used. While runs on DocId partitioning using parallelism
reduce run times over the client/server runs, TermId runs actually increase in time.
This evidence is consistent with the update transaction results described above.
However, it is clear that DocId partitioning after a certain parallel machine size holds
the run times constant, and the ability to cope with resource contention is far superior
to that of TermId. There is some doubt as to the wisdom of deploying parallelism after
a given point, but other factors such as the total time for an index reorganisation are
important. Our choice of either parallelism or the actual level of parallelism will
depend on the balance between normal transaction processing and transaction
processing during an index update. A further interesting observation is that transaction
sets with more update transactions are less affected by resource contention than others
with more query transactions, which is particularly noticeable in TermId results (see
Figures 27 and 29). The reason for this is that update transactions are faster than query
transactions and are therefore much less affected when the index is being updated.

Take in Figure 26. BASE1 [DocId]: average elapsed time in ms for all transactions
during index reorganisation (postings only)
Take in Figure 27. BASE1 [TermId]: average elapsed time in ms for all transactions
during index reorganisation (postings only)
Take in Figure 28. BASE1 [DocId]: average elapsed time in ms for all transactions
during index reorganisation (position data)
Take in Figure 29. BASE1 [TermId]: average elapsed time in ms for all transactions
during index reorganisation (position data)

What effect do these results have on throughput? In Figures 30 to 34 the throughput
figures are declared, with the data separated into transaction sets. The suffix "ro" in
the diagrams signifies that the run was done in the presence of an index
reorganisation. The throughput measure is thousands of transactions per hour.

Take in Figure 30. BASE1: combined transactions throughput for UPDATE1
transaction set
Take in Figure 31. BASE1: combined transactions throughput for UPDATE2
transaction set
Take in Figure 32. BASE1: combined transactions throughput for UPDATE3
transaction set
Take in Figure 33. BASE1: combined transactions throughput for UPDATE4
transaction set
Take in Figure 34. BASE1: combined transactions throughput for UPDATE
transaction set

 9

The main conclusion from these throughput results is that DocId partitioning
outperforms TermId using any type of index (as would be expected from the elapsed
time data). Using this measure demonstrates how disappointing the performance of
TermId actually is: throughput is not improved by the addition of extra leaf nodes.
Many runs are limited to a throughput of 20k transactions per hour. The best
performing index type/partitioning pair is DocId with postings only indexes on any of
the transaction sets. It can be seen in the diagrams through DocId with postings only
data that the transaction set has an impact on trends in throughput. For example, on
the UPDATE1 set there is a clear increase in throughput for increasing numbers of
leaf nodes, while throughput on the UPDATE set shows a clear tailing off effect with
larger numbers of leaf nodes (see Figures 30 and 34). Throughput on the index
type/partitioning method relative to each other is consistent irrespective of the
transaction set under scrutiny.

Take in Figure 35. BASE1 [DocId]: load imbalance for all transactions (postings
only)
Take in Figure 36. BASE1 [DocId]: load imbalance for all transactions (position
data)
Take in Figure 37. BASE1 [TermId]: load imbalance for all transactions (postings
only)
Take in Figure 38. BASE1 [TermId]: load imbalance for all transactions (position
data)

How does load imbalance affect the results given above? Load imbalance does not
appear to be a significant problem: Figures 35 to 38 show the overall level of load
imbalance for all transactions. It can be seen that imbalance is higher in DocId than it
is in TermId, for both types of indexes. The imbalance figures for all results are
relatively small, but clearly there is an increase in imbalance with increasing parallel
machine size on DocId, while imbalance on TermId remains fairly constant. The key
result here is that document updates do not harm overall load imbalance significantly.
The “round robin” method of distributing document updates to nodes when DocId
partitioning is used is a reasonable method. The results also show that it may be
possible to offer better concurrent transaction service on TermId partitioning than
DocId partitioning (this is consistent with imbalance results found in probabilistic
search (MacFarlane et al., 2000)).

Take in Table III. BASE1/BASE10 [DocId]: index update results for all transactions

Table III shows the scalability results for all transactions. Average elapsed times for
BASE10 runs during normal transaction processing are all under half a second when
postings only indexes are used and under a second for position data indexes. The
delays on BASE10 while indexes are updated are considerable and runs are over
double, a factor particularly significant for indexes with position data. It may not be

 10

viable to use the index update method for this task, particularly if queries are delayed
beyond the 10 second elapsed time recommendation (Frakes, 1992) during an index
reorganisation on much larger collections. Scalability is very good and increases with
the number of updates in a transaction: as would be expected since updates provide
much better scalability than queries (see Table II). Elapsed times trends are inverse to
that of scalability and for the same reason.

It is clear that within our experimental framework the best partitioning method for
transaction processing is DocId. Both the experiments discussed here and work
discussed throughout this paper show that DocId partitioning provides better
performance both in normal transaction processing and when an index reorganisation
is initiated for all types of transactions. However, the imbalance figures demonstrate
that concurrent transaction processing might work well on TermId partitioning, a
conclusion which reinforces our previous experience with search (MacFarlane et al.,
2000). Scalability of transactions using DocId partitioning is good, but results
demonstrate that the index update task defined here may not be a viable solution for
much larger collections than ones considered here.

6.3 Performance of index reorganisation
The results found in our index reorganisation performance confirm that it is better to
wait for a given period and do the reorganisation collectively than do it on a one
document basis (Shoens et al., 1994). Figures 39 to 42 show the index reorganisation
results using elapsed time in seconds.

Take in Figure 39. BASE1 [DocId]: index reorganisation elapsed time in seconds
(postings only)
Take in Figure 40. BASE1 [DocId]: index reorganisation elapsed time in seconds
(position data)
Take in Figure 41. BASE1 [TermId]: index reorganisation elapsed time in seconds
(postings only)
Take in Figure 42. BASE1 [TermId]: index reorganisation elapsed time in seconds
(position data)

Above all these figures show how expensive index reorganisations are, particularly for
indexes with position data. It should be noted that these figures are much reduced
from a method which would require a reorganisation of the whole index. The best
buffer size for this data is 500 documents: there is very little difference between
reorganisations done on buffer sizes of 500 documents and 400 documents,
particularly for indexes with position data. There is an increase in the elapsed time for
increasing buffer size on all runs, but the increase is not linear with the number of
documents in the buffer: the results on multiple leaf nodes are the same. Comparing
the partitioning methods, elapsed times on DocId are better than TermId using all
buffer sizes and on all multiple leaf nodes runs apart from 2 leaf nodes on a 500
document buffer. Speed advantage is shown in both partitioning methods by
increasing the leaf nodes set in a run. Figures 43 to 46 show the speedup for index
reorganisation on both partitioning methods.

 11

Take in Figure 43. BASE1 [DocId]: index reorganisation speedup (postings only)
Take in Figure 44. . BASE1 [DocId]: index reorganisation speedup (position data)
Take in Figure 45. BASE1 [TermId]: index reorganisation speedup (postings only)
Take in Figure 46. BASE1 [TermId]: index reorganisation speedup (position data)

Good speed advantage is shown by any number of leaf nodes using any type of
partitioning method. Super-linear speedup is shown on both partitioning methods,
apart from TermId, on any run using 6 leaf nodes with any type of index. The run on 6
leaf nodes on an 80 document buffer is particularly disappointing considering the
other results. We will return to this factor when discussing load imbalance below.
Why does this super-linear speedup occur? If we examine the total time needed for an
index reorganisation we find that all parallel runs reduce the total time for an index
reorganisation. Figures 47 and 48 show the underlying reason why the super-linear
speedup occurs.

Take in Figure 47. BASE1 [DocId]: millions of postings handled during index
reorganisation
Take in Figure 48. BASE1 [TermId]: millions of postings handled during index
reorganisation

The total number of posting records handled for DocId actually reduces with
increasing numbers of leaf nodes, but TermId runs move much the same amount of
data. The reason for this effect in DocId partitioning is that as the number of leaf
nodes is increased, the more frequent terms which both the buffer and index shared
are spread over more blocks which have fewer records associated with them. The
more frequent occurring terms are interspersed among less frequent terms as more
blocks are handled. This effect does not happen on TermId partitioning as much the
same blocks will be handled by parallel runs of any leaf node size. There is some
variation in TermId but the effect is minimal. Note that the number of postings moved
for a 500 document buffer is always slightly more than those for a 400 document
buffer. The total number of postings in BASE1 collection is 22.6 million: just over
half the index is reorganised for just 500 documents, reducing with increasing
numbers of leaf nodes. The evidence suggests that a good buffer size for this data is
500 documents.

From the evidence given above there is clearly an offset between the advantage gained
in DocId partitioning by increasing the number of leaf nodes and improvements in
performance gained by waiting until the buffer has reached a given size. We can
therefore make a case for delaying the initiation of index reorganisation on more leaf
nodes until their buffers contain more documents. In this way we can take advantage
of both effects discussed, i.e. less data movement on more leaf nodes and less time
when an index update is being done. Figs 49 to 52 provides more evidence of the
increased buffer effect on load imbalance.

 12

Take in Figure 49. BASE1 [DocId]: index reorganisation load imbalance (postings
only)
Take in Figure 50. BASE1 [TermId]: index reorganisation load imbalance (postings
only)
Take in Figure 51. BASE1 [DocId]: index reorganisation load imbalance (position
data
Take in Figure 52. BASE1 [TermId]: index reorganisation load imbalance (position
data)

The imbalance figures for DocId partitioning show that initiating index
reorganisations with a 40 document buffer does not yield good load balance.
Increasing the leaf nodes set size also has a tendency to increase imbalance. The
TermId partitioning method is generally more consistent, but imbalance on six leaf
nodes for any buffer size is noticeably worse than for other leaf nodes. This is a failure
of the distribution process which relies on a heuristic to distribute data to leaf nodes.
This has a direct and significant impact on speedup for TermId partitioning runs for 6
leaf nodes (see figs 45 and 46).

6.4 Summary of experimental results
In all aspects of transaction processing and index reorganisation, DocId partitioning is
shown to be superior to TermId partitioning. For update transactions both methods are
quick when data is added to the buffer, but DocId provides better transaction
performance when an index reorganisation is being executed. Many update
transactions meet our 100 millisecond requirement for elapsed times for document
insertions. For transactions with both updates and queries, DocId is superior largely
because of the performance improvement which is obtained with that method, shown
in previous experiments with probabilistic search (MacFarlane et al., 2000). The total
number of records moved during index reorganisation is reduced with increasing
numbers of leaf nodes when DocId partitioning is used. There is, however, an offset
between the buffer size for incoming updates and increasing the leaf nodes set in order
to reduce the amount of data moved. Overall our empirical results demonstrate that
DocId partitioning is the preferred method for servicing the inverted file index
maintenance techniques outlined in this paper. One might question the viability of the
method of index update, if queries are delayed beyond the 10 second response time
recommended by Frakes (1992) or updates are delayed more than the 100 millisecond
or 1 second requirement recommended in this paper. This issue will be examined
further in the conclusion.

Conclusion
The empirical results from this research show that in all aspects of both transaction
processing and index reorganisation, the DocId partitioning method is far superior.
Problems highlighted in our probabilistic search experiments (MacFarlane et al.,
2000) impose severe restrictions on transaction processing when the TermId method is
used, which are difficult to solve within our experimental context. These problems
(most notably the sort aspect of search) had an impact on the relative difference
between the two partitioning methods during transaction processing. In index
reorganisation when using DocId partitioning, the amount of data which needs to be

 13

moved reduces with increasing leaf node set size due to the qualities of the keyword
set for each element of the leaf nodes set (the assumption made in the synthetic model
was correct). Providing the same term block strategy was used, this effect will be a
generic one. We have found evidence, however, that TermId might be useful in a
concurrent transaction processing context, and this would have to be the focus for any
future research.

It may be the case that the methods outlined in this paper for dealing with new
documents may not be viable in a realistic situation: we could consider a scenario
where the update rate was so high buffer space would run out, thereby crashing the
system or cause a denial of service. Such a problem would occur when there are more
updates being submitted to the system than it can handle, so that the time to re-
organise an index with these new updates is greater than the actual time available on
the system. There are limits to a method of storage such as inverted file which is
designed for fast search and which is expensive to maintain: therefore, for these high
update applications some other method of transaction processing and storage method
is required. Where our methods are not useable we would recommend the use of a two
phase signature search (Cringean et al., 1990) which allow for cheap updates, but also
allow for a high degree of parallelism.

Acknowledgements
This research is supported by the British Academy under grant number IS96/4203. We
are also grateful to ACSys for awarding the first author a visiting student fellowship at
the Australian National University in order to complete this research and the use of
their equipment. We are particularly grateful to David Hawking for making the
arrangements for the visit to the ANU.

References
Brown, E.W., Callan, J.P., Croft, W.B. and Moss, J.E.B. (1994), “Suporting full-text

information retrieval with a persistent object store, in Jarke, M., Bubenko, J. and
Jeffery, K. (Eds), Proceedings of EDBT'94, March 1994, LNCS 779, Springer-
Verlag, pp. 365-377.

Clarke, C.L.A. and Cormack, G.V. (1995), Dynamic Inverted Indexes for a
Distributed Full-Text Retrieval System, MultiText Project Technical Report
MT-95-01, Department of Computer Science, University of Waterloo, Ontario.

Cringean, J.K., England, R., Manson, G.A. and Willett, P. (1990), “Parallel text
searching in serial files using a processor farm”, in Vidick, J.L. (Ed),
Proceedings of the 13th International Conference on Research and
Development in Information Retrieval, ACM Press, pp. 429-453.

DeWitt D. and Gray, J. (1992), “Parallel database systems: the future of high
performance database systems”, Communications of the ACM, Vol. 35, No. 6.

Frakes, W.B. (1992), “Introduction to information storage and retrieval systems”, in
Frakes, W.B, and Baeza-Yates, R. (Eds), Information Retrieval, Data Structures
and Algorithms, Prentice-Hall, pp. 1-12.

Hawking, D. Craswell N. and Thistlewaite, P. (1999), “Overview of TREC-7 Very
Large Collection Track”, in Voorhees, E.M. and Harman, D.K. (Eds),

 14

Proceedings of the Seventh Text Retrieval Conference, Gaithersburg, U.S.A,
November 1998, NIST Special publication 500-242, pp. 91-104.

Lewis, D. (2006), The Reuters 21578 test collection, available at:
http://www.daviddlewis.com/resources/testcollections/reuters21578/ (accessed
22 August 2006).

MacFarlane, A., McCann J.A. and Robertson S.E. (2005), “Parallel methods for the
generation of partitioned inverted files”, Aslib Proceedings, Vol. 57 No. 5, pp.
434-459.

MacFarlane, A., Robertson S.E. and McCann J.A. (1996), “On concurrency control
for inverted files”, in Johnson, F.C. (Ed.), Proceedings of the 18th BCS IRSG
Annual Colloquium on Information Retrieval Research, March 26-27 1996,
Manchester, BCS IRSG, pp. 67-79.

MacFarlane, A., Robertson S.E. and McCann J.A. (1999), “PLIERS at TREC8”, in
Voorhees, E. and Harman, D.K. (Eds), Proceedings of the Eight Text Retrieval
Conference, Gaithersburg, U.S.A, November 1999, Gaithersburg, SP 500-246,
NIST, Gaithersburg, pp. 241-252.

MacFarlane, A., Robertson S.E. and McCann J.A. (2000), “Parallel methods for the
search of partitioned inverted files, in, De La Fuente, P. (Ed.), Proceedings of
String Processing and Information Retrieval - SPIRE 2000, September 2000, A
Coruna, Spain, IEEE Computer Society Press, pp. 209-220.

Shoens, K., Tomasic, A. and Garcia-Molina, H. (1994), “Synthetic workload
performance analysis of incremental updates”, in Croft, W.B. and Van
Rijsbergen, C.J. (Eds), Proceedings of the 17th annual international ACM-
SIGIR conference on research and development in Information Retrieval.
SIGIR94, Springer-Verlag, London, pp. 329-338.

Reddaway, S.F. (1991), “High speed text retrieval from large databases on a massively
parallel processor”, Information Processing & Management, Vol. 27 No. 4, pp.
311-316.

Thomson Dialog (2005), Dialog Database Catalog, Thomson Dialog Ltd,
http://www.dialog.com [visited 29th May 2007]

Zobel, J. and Moffat, A. (2006), “Inverted files for text search engines”, ACM
Computing Surveys, Vol. 38, No. 2, article 6.

 15

Glossary

Distributed Build Method of building indexes where text is distributed from a single node.
DocId Parititioning method which assigns all document data for a given document

to one index partition
Efficiency Measure of the effective use of processors. Definition:

Speedup on n processors/n processors
LI A measure of the amount of load imbalance on n processors:

max time on n processors/average time on n processors
Local Build Method of indexing where all processing is kept local to the node.
Mhz Megahertz: processor clock speed.
Partition Fragment of inverted file on a nodes disk.
Scalability A measure of how well the algorithm scales on the same equipment.

Definition:
Time on small collection Size of large collection
-------------------------------- * -----------------------------
Time on large collection Size of small collection

Speedup Measure of speed advantage of parallelism. Definition:
Time on 1 processors / Time on n processors.

TermId Parititioning method which assigns all term data for a given term to one
partition

TREC Annual Text Retrieval Conference run by the National Institute of Standards
and Technology in the United States.

VLC Very Large Collection: Collection of 100 GB web data used in the TREC-7
VLC2 sub-track.

 16

Figure 1. Example of transaction topology configuration

0

20

40

60

80

100

1 2 3 4 5 6 7

Leaf nodes

T
im

e
:

m
s

update

update1

update2

update3

update4

Figure 2. BASE1 [DocId]: average elapsed

time in ms for update transactions
(postings only)

Leaf nodes

T
im

e
:

m
s

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 3. BASE1 [TermId]: average elapsed

time in ms for update transactions
(postings only)

Leaf nodes

T
im

e
:

m
s

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 4. BASE1 [DocId]: average elapsed
time in ms for update transactions

(position data)

Leaf nodes

T
im

e
:

m
s

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 5. BASE1 [TermId]: average elapsed
time in ms for update transactions

(position data)

 commit

 Top Node Client
 document

 commit analysed document

 Leaf Node1 Leaf Node2 Leaf Noden

 Disk1 Disk2 Diskn

 17

Leaf nodes

S
p

e
e
d

u
p

1

1.5

2

2.5

3

3.5

2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 6. BASE1 [DocId]: speedup for

update transactions (postings only)

Leaf nodes

S
p

e
e
d

u
p

1

1.5

2

2.5

3

3.5

2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 7. BASE1 [TermId]: speedup for

update transactions (postings only)

Leaf nodes

S
p

e
e
d

u
p

1

1.5

2

2.5

3

3.5

4

4.5

2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 8. BASE1 [DocId]: speedup for

update transactions (position data)

Leaf nodes

S
p

e
e
d

u
p

1

1.5

2

2.5

3

3.5

4

4.5

2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 9. BASE1 [TermId]: speedup for

update transactions (position data)

 18

Leaf nodes

T
im

e
:

m
s

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 10. BASE1 [DocId]: average elapsed
time in ms for update transactions during

index reorganisation (postings only)

Leaf nodes

T
im

e
:

m
s

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 11. BASE1 [TermId]: average
elapsed time in ms for update transactions
during index reorganisation (postings only)

Leaf nodes

T
im

e
:

m
s

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 12. BASE1 [DocId]: average elapsed
time in ms for update transactions during

index reorganisation (position data)

Leaf nodes

T
im

e
:

m
s

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 13. BASE1 [TermId]: average
elapsed time in ms for update transactions
during index reorganisation (position data)

 19

Leaf nodes

%
 i
n

c
re

a
s
e

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 14. BASE1 [DocId]: % increase in
average elapsed time for update transactions
during index reorganisation (postings only)

Leaf nodes

%
 i
n

c
re

a
s
e

0

50

100

150

200

250

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 15. BASE1 [TermId]: % increase in
average elapsed time for update transactions

during index reorganisation (postings
only)

Leaf nodes

%
 i
n

c
re

a
s
e

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 16. BASE1 [DocId]: % increase in
average elapsed time for update transactions
during index reorganisation (position data)

Leaf nodes

%
 i
n

c
re

a
s
e

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 17. BASE1 [TermId]: % increase in
average elapsed time for update transactions
during index reorganisation (position data)

 20

Leaf nodes

m
s

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 18. BASE1 [DocId]: transaction
average elapsed times in ms (postings only)

Leaf nodes

m
s

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 19. BASE1 [TermId]: transaction

average elapsed times in ms (postings only)

Leaf nodes

m
s

0

100

200

300

400

500

600

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 20. BASE1 [DocId]: transaction
average elapsed times in ms (position data)

Leaf nodes

m
s

0

100

200

300

400

500

600

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 21. BASE1 [TermId]: transaction

average elapsed times in ms (position data)

 21

Leaf nodes

S
p

e
e
d

u
p

0

1

2

3

4

5

6

7

2 3 4 5 6 7

UPDATE1

UPDATE2

UPDATE3

UPDATE4

UPDATE

Figure 22. BASE1 [DocId]: speedup for all
transactions (postings only)

Leaf nodes

S
p

e
e
d

u
p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 3 4 5 6 7

UPDATE1

UPDATE2

UPDATE3

UPDATE4

UPDATE

Figure 23. BASE1 [TermId]: speedup for all
transactions (postings only)

Leaf nodes

S
p

e
e
d

u
p

0

1

2

3

4

5

6

7

2 3 4 5 6 7

UPDATE1

UPDATE2

UPDATE3

UPDATE4

UPDATE

Figure 24. BASE1 [DocId]: speedup for all
transactions (position data)

Leaf nodes

S
p

e
e
d

u
p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 3 4 5 6 7

UPDATE1

UPDATE2

UPDATE3

UPDATE4

UPDATE

Figure 25. BASE1 [TermId]: speedup for all
transactions (position data)

 22

Leaf nodes

T
im

e
:

m
s

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 26. BASE1 [DocId]: average elapsed
time in ms for all transactions during index

reorganisation (postings only)

Leaf nodes

T
im

e
:

m
s

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 27. BASE1 [TermId]: average

elapsed time in ms for all transactions during
index reorganisation (postings only)

Leaf nodes

T
im

e
:

m
s

0

100

200

300

400

500

600

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 28. BASE1 [DocId]: average elapsed
time in ms for all transactions during index

reorganisation (position data)

Leaf nodes

T
im

e
:

m
s

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7

update

update1

update2

update3

update4

Figure 29. BASE1 [TermId]: average

elapsed time in ms for all transactions during
index reorganisation (position data)

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7

Leaf nodes

T
h

ro
u

g
h

p
u

t

k
/h

o
u

r

DocId- NPOS

DocId- POS

TermId- NPOS

TermId- POS

DocId-NPOS-ro

DocId-POS-ro

TermId- NPOS-
Figure 30. BASE1: combined transactions
throughput for UPDATE1 transaction set

Leaf nodes

T
h

ro
u

g
h

p
u

t

k
/h

o
u

r

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7

DocId-NPOS

DocId- POS

TermId- NPOS

TermId- POS

DocId- NPOS-ro

DocId- POS-ro

TermId-NPOS-ro

TermId- POS-ro

Figure 31. BASE1: combined transactions
throughput for UPDATE2 transaction set

Leaf nodes

T
h

ro
u

g
h

p
u

t

k
/h

o
u

r

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7

DocId-NPOS

DocId-POS

TermId-NPOS

TermId-POS

DocId-NPOS-ro

DocId-POS-ro

TermId-NPOS-ro

TermId-POS-ro

Figure 32. BASE1: combined transactions
throughput for UPDATE3 transaction set

Leaf nodes

T
h

ro
u

g
h

p
u

t

k
/h

o
u

r

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7

DocId-NPOS

DocId- POS

TermId- NPOS

TermId- POS

DocId-NPOS-ro

DocId- POS-ro

TermId- NPOS-ro

TermId- POS-ro

Figure 33. BASE1: combined transactions
throughput for UPDATE4 transaction set

 23

Leaf nodes

T
h

ro
u

g
h

p
u

t

k
/h

o
u

r

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7

DocId-NPOS

DocId- POS

TermId- NPOS

TermId- POS

DocId-NPOS-ro

DocId- POS-ro

TermId- NPOS-ro

TermId- POS-ro

Figure 34. BASE1: combined transactions throughput

for UPDATE transaction set

 24

Leaf nodes

L
I

1

1.1

1.2

1.3

1.4

1.5

2 3 4 5 6 7

UPDATE1

UPDATE2

UPDATE3

UPDATE4

UPDATE

Figure 35. BASE1 [DocId]: load imbalance

for all transactions (postings only)

Leaf nodes

L
I

1

1.1

1.2

1.3

1.4

1.5

2 3 4 5 6 7

UPDATE1

UPDATE2

UPDATE3

UPDATE4

UPDATE

Figure 36. BASE1 [DocId]: load imbalance

for all transactions (position data)

Leaf nodes

L
I

1

1.1

1.2

1.3

1.4

1.5

2 3 4 5 6 7

UPDATE1

UPDATE2

UPDATE3

UPDATE4

UPDATE

Figure 37. BASE1 [TermId]: load imbalance

for all transactions (postings only)

Leaf nodes

L
I

1

1.1

1.2

1.3

1.4

1.5

2 3 4 5 6 7

UPDATE1

UPDATE2

UPDATE3

UPDATE4

UPDATE

Figure 38. BASE1 [TermId]: load imbalance
for all transactions (position data)

 25

0

50

100

150

200

1 2 3 4 5 6 7

Leaf nodes

E
la

p
s
e
d

 T
im

e
:

s
e
c
s

40 docs

80 docs

200 docs

400 docs

500 docs

Figure 39. BASE1 [DocId]: index
reorganisation elapsed time in seconds

(postings only)

Leaf nodes

E
la

p
s
e
d

 T
im

e
:

s
e
c
s

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7

40 docs

80 docs

200 docs

400 docs

500 docs

Figure 40. BASE1 [DocId]: index
reorganisation elapsed time in seconds

(position data)

Leaf nodes

E
la

p
s
e
d

 T
im

e
:

s
e
c
s

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7

40 docs

80 docs

200 docs

400 docs

500 docs

Figure 41. BASE1 [TermId]: index
reorganisation elapsed time in seconds

(postings only)

Leaf nodes

E
la

p
s
e
d

 T
im

e
:

s
e
c
s

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7

40 docs

80 docs

200 docs

400 docs

500 docs

Figure 42. BASE1 [TermId]: index
reorganisation elapsed time in seconds
(position data)

 26

1

6

11

16

2 3 4 5 6 7

Leaf nodes

S
p

e
e
d

u
p

40 docs

80 docs

200 docs

400 docs

500 docs

Figure 43. BASE1 [DocId]: index

reorganisation speedup (postings only)

1

6

11

16

2 3 4 5 6 7

Leaf nodes

S
p

e
e
d

u
p

40 docs

80 docs

200 docs

400 docs

500 docs

Figure 44. BASE1 [DocId]: index

reorganisation speedup (position data)

Leaf nodes

S
p

e
e
d

u
p

1

2

3

4

5

6

7

8

9

10

2 3 4 5 6 7

40 docs

80 docs

200 docs

400 docs

500 docs

Figure 45. BASE1 [TermId]: index

reorganisation speedup (postings only)

Leaf nodes

S
p

e
e
d

u
p

1

2

3

4

5

6

7

8

9

10

2 3 4 5 6 7

40 docs

80 docs

200 docs

400 docs

500 docs

Figure 46. BASE1 [TermId]: index
reorganisation speedup (position data)

 27

Leaf nodes

R
e
c
o
rd

s
:
m

il
li
o
n
s

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7

40 docs

80 docs

200 docs

400 docs

500 docs

Figure 47. BASE1 [DocId]: millions of

postings handled during index reorganisation

Leaf nodes

R
e
c
o
rd

s
:
m

il
li
o
n
s

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7

40 docs

80 docs

200 docs

400 docs

500 docs

Figure 48. BASE1 [TermId]: millions of
postings handled during index reorganisation

 28

Leaf nodes

L
I

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2 3 4 5 6 7

40 Docs

80 Docs

200 Docs

400 Docs

500 Docs

Figure 49. BASE1 [DocId]: index

reorganisation load imbalance
(postings only)

Leaf nodes

L
I

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2 3 4 5 6 7

40 Docs

80 Docs

200 Docs

400 Docs

500 Docs

Figure 50. BASE1 [TermId]: index

reorganisation load imbalance
(postings only)

Leaf nodes

L
I

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2 3 4 5 6 7

40 Docs

80 Docs

200 Docs

400 Docs

500 Docs

Figure 51. BASE1 [DocId]: index
reorganisation load imbalance

(position data)

Leaf nodes

L
I

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2 3 4 5 6 7

40 Docs

80 Docs

200 Docs

400 Docs

500 Docs

Figure 52. BASE1 [TermId]: index
reorganisation load imbalance

(position data)

 29

Table I. Details of transaction sets used in experiments

Transaction
set Name

No of
Updates

No of
Queries

No of
Transactions

UPDATE1 40 400 440
UPDATE2 80 400 480
UPDATE3 200 400 600
UPDATE4 400 400 800
UPDATE 500 400 900

Table II. BASE1/BASE10 [DocId]: index update results for update transactions

Metric Collection UP UP1 UP2 UP3 UP4
Postings Only (No Positions)
Elapsed Time (ms) BASE1

BASE10
43
109

43
124

46
124

40
121

43
123

Scalability BASE10 3.97 3.46 3.72 3.33 3.51
Elapsed Time (ms)
during index update

BASE1
BASE10

55
268

64
380

62
359

60
310

57
299

Scalability during
index update

BASE10 2.07 1.67 1.73 1.95 1.91

Position Data
Elapsed Time (ms) BASE1

BASE10
52
202

48
265

51
261

48
243

51
246

Scalability BASE10 2.55 1.83 1.97 1.98 2.06
Elapsed Time (ms)
during index update

BASE1
BASE10

103
621

130
971

131
975

125
892

115
817

Scalability during
index update

BASE10 1.66 1.34 1.34 1.40 1.40

Table III. BASE1/BASE10 [DocId]: index update results for all transactions

Metric Collection UP UP1 UP2 UP3 UP4
Postings Only (No Positions)
Elapsed Time (ms) BASE1

BASE10
60
257

75
479

73
440

66
363

60
280

Scalability BASE10 2.35 1.56 1.66 1.83 2.14
Elapsed Time (ms)
during index update

BASE1
BASE10

80
551

118
1021

112
949

98
776

82
604

Scalability during
index update

BASE10 1.46 1.15 1.18 1.26 1.36

Position Data
Elapsed Time (ms) BASE1

BASE10
72
448

103
891

97
818

84
660

73
505

Scalability BASE10 1.61 1.15 1.18 1.27 1.45
Elapsed Time (ms)
during index update

BASE1
BASE10

159
1368

265
2562

246
2364

205
1924

167
1517

Scalability during
index update

BASE10 1.17 1.04 1.04 1.07 1.10

