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Abstract 
Purpose – An issue which tends to be ignored in information retrieval is the issue of 
updating inverted files. This is largely because inverted files were devised to provide 
fast query service, and much work has been done with the emphasis strongly on 
queries. In this paper we study the effect of using parallel methods for the update of 
inverted files in order to reduce costs, by looking at two types of partitioning for 
inverted files: document identifier and term identifier. 
Design/methodology/approach – Raw update service and update with query service 
are studied with these partitioning schemes using an incremental update strategy. We 
use standard measures used in parallel computing such as speedup to examine the 
computing results and also the costs of reorganising indexes while servicing 
transactions. 
Findings – Empirical results show that for both transaction processing and index 
reorganisation the document identifier method is superior. However, there is evidence 
that the term identifier partitioning method could be useful in a concurrent transaction 
processing context. 
Practical implications – There is an increasing need to service updates which is now 
becoming a requirement of inverted files (for dynamic collections such as the Web), 
demonstrating that a shift in requirements of inverted file maintenance is needed from 
the past.  
Originality/value – The paper is of value to database administrators who manage 
large-scale and dynamic text collections, and who need to use parallel computing to 
implement their text retrieval services. 
Keywords Information retrieval, Parallel programming, Inverted files 
Paper type Research paper 
 
 

1. Introduction 
One of the most neglected areas in information retrieval is the issue of servicing 
updates to inverted files. In most applications this is understandable given that some 
databases will not be updated very frequently: for example, Dialog and DataStar have 
databases which are updated weekly, monthly quarterly or even yearly (Thomson 
Dialog, 2005). However, some applications such as web search engines or News 
services like Reuters could have updates arriving 24 hours a day, and there is no time 
when the system could be taken down and the updates serviced in a batch. Updating 
inverted files is very expensive and periodically requires the re-indexing of the whole 
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database. It is therefore becoming increasingly important to examine the impact of 
update and query services on inverted files. In this paper we describe the update 
mechanism for a Parallel text retrieval system, PLIERS, on two different types of 
partitioning methods: term identifier partitioning (TermId) where each term, with all 
its associated postings is assigned to a single fragment (and therefore information 
about any document is distributed among fragments); and document identifier 
partitioning (DocId) where the reverse is the case. 
 
 
2. Experimental methodology 
Much of the previous work in the area of inverted file maintenance (Reddaway, 1991; 
Shoens et al., 1994; Clark and Cormack, 1995; Brown et al., 1994) has advocated the 
use of buffering updates to save on Input/Output. Some argue that to update the index 
for each individual arriving document is inefficient (Shoens, et al., 1994) but use a 
synthetic workload performance analysis to support their arguments. We attempt to 
simulate a persistent service for updates without coding a complete transaction 
service, accepting that it is better to wait a little before updating an index. To do this 
we keep an in-core buffer to which updates are added when they are received. When 
this buffer is full, we initiate an index reorganisation merging the in-core update index 
with the index kept on disk. In order to do this we use the following strategy: 
 

1. Read in inverted list from disk. 
2. Add new postings to inverted list. 
3. Save the new postings to disk to a temporary postings file. 

 
As we are unlikely to be able to keep the dictionary in-core, we keep a subset of the 
keywords in memory, with each element of the subset a header of a keyword block 
held on disk. All hit keyword blocks are saved to a temporary Keyword file for 
realism. The advantage of this method is that we can do a realistic disk re-organisation 
simulation without the need for expensive rollbacks in order to conduct repeated 
experiments on the same data set. We do not attempt to reorganise the whole index as 
we assume that a large chunk of the database will never be referenced by incoming 
updates. The transaction we refer to as updates are collection updates or document 
insertions: we do not address the issue of document removals or document changes. 
Our assumption is that text collections are in the main archival. Our priority is to try 
and keep the index in a state that would allow us to service fast query processing. We 
do, however, allow the service of transactions while the reorganisation of the index is 
being done: there is a strict interleaving between the reorganisation of a term and 
transaction service to prevent concurrency problems. There may therefore be some 
delays to transactions while a reorganisation of the index is going on. 
 
A number of issues have not been addressed, such as simultaneous update and query 
processing together with concurrency control due to time constraints. However, we 
recognise the importance of those issues and deal with them theoretically elsewhere 
(MacFarlane et al., 1996). The document availability semantics we use is Late 
Availability which is defined by MacFarlane and colleagues (1996). A survey of 
strategies for updating inverted files is available in Zobel and Moffat (2006). 
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3. Transaction topologies 
Given that we want to service search and updates simultaneously, the transaction 
topology cannot differ too much from the search topology described elsewhere 
(MacFarlane et al., 2000). We therefore define top and leaf nodes which can handle 
both search operations and the update operations implemented. We describe the 
additional functionality needed by the nodes to support update operations above. 
Figure 1 shows an example of transaction topology with the service of updates. 
 
 
Take in Figure 1. Example of transaction topology configuration 
 
 
3.1 Top node 
The top node being the interface to the topology, accepts new documents, breaks them 
down into their constituent words, and sends the index information to the relevant 
inverted file fragment. The main issue here is that the top node must know what type 
of partitioning method being used in order to send data to fragments accordingly. For 
example, in TermId partitioning a bucket of words will be formed for each fragment 
of the inverted file. These can be sent directly to the fragments. However, with DocId 
partitioning, a decision must be made as to how new documents are allocated to the 
fragments. We make the assumption that over a given period of time incoming 
documents that are distributed in a “round robin” fashion will give each fragment 
roughly the same amount of data, although it is unlikely to be evenly distributed. We 
therefore assign new document to fragments using a “round robin” distribution 
method when document identifier partitioning is used. For both types of partitioning 
method a confirmation of update completion must be received before a commit notice 
is sent to the client. 
 
3.2 Leaf node 
The leaf node receives index data and merges it with the fragment index data handled 
by that particular leaf node. This sequential process is identical to that described in 
another paper by MacFarlane and colleagues (2005). Some collection statistics and 
document data must be shared amongst leaf nodes (e.g., collection size and document 
length). Each leaf has a document map structure which records such information. 
When a search transaction is received by the leaf, both the index and the in-core buffer 
are searched. If a reorganisation of the index is initiated new updates are added to a 
separate temporary buffer: this is searched as well if new queries are received by the 
leaf. When the reorganisation is complete this temporary buffer becomes the main 
buffer. 
 
 
4. Software and hardware used 
PLIERS (ParaLLel Informaton rEtrieval Rearch System) has been developed at City 
University using ideas from Okapi to investigate the use of parallelism in IR. PLIERS 
is designed to run on several parallel architectures and is currently implemented on 
those which use Sun Sparc, DEC Alpha and Pentium PII processors. The results 
presented in this paper were obtained on 8 nodes of a 12 node AP3000 at the 
Australian National University, Canberra. Each node has its own local disk: the 
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shared nothing architecture (DeWitt and Gray, 1992) is used by PLIERS. The 
Fujistsu AP3000 is a distributed memory parallel Computer using Ultra 1 processors 
running Solaris 2.5.1. Each node has a speed of 167Mhz. The torus network has a top 
bandwidth of 200 Mbytes/s per second. 
 
 
5. Data and settings used 
The data used in the experiments was the BASE1 and BASE10 collections, both sub-
sets of the official 100 Gigabyte VLC2 collection (Hawking et al., 1999). The BASE1 
is 1 Gigabyte in size, while BASE10 is approximately 10 Gigabytes in size. We use 
two types of builds for indexes: distributed builds where text is kept centrally and 
distributed to index nodes and local builds where text is physically distributed to 
nodes and indexed locally (MacFarlane et al., 2005). For the distributed build method 
we use the BASE1 collection only, creating indexes on 1 to 7 processors and servicing 
transactions on all of those indexes. Two types of index were built for these 
experiments: one set using TermId partitioning and one using DocId partitioning. The 
BASE1 and BASE10 collections were used for the local build method, running 
queries on 8 nodes: the client and top node had to be placed on the same node as one 
leaf. The DocId partition method is used on these experiments. We built one set of 
indexes which contained position data and one set without position data for both types 
of build methods and both types of partitioning methods (runs with position data are 
marked ‘position data’, while those without such data are marked ‘postings only’). 
 
 
Take in Table I. Details of transaction sets used in experiments 
 
 
Table I shows the transaction sets used in our experiments. The queries are based on 
topics 1 to 450 of the TREC1 to TREC8 ad-hoc tracks: 400 queries in all (the topics 
201-250 in TREC4 did not have a title only field in the topics). The terms were 
extracted from TREC topic descriptions using an Okapi query generator utility to 
produce the final query. The average number of terms per query is 3.46. The 
document updates were chosen from a Reuters-22173 collection (Lewis, 2006) not in 
the VLC2 set: we refer to this file as REUTERS. We chose this set because we can 
guarantee that the data is new to the VLC2 set. The REUTERS file is 1.2 Mb in size 
and has 1000 records. We took both these sets and created transaction sets with 
differing numbers of updates and queries, varying the number of updates to queries. 
We do this at a number of rates ranging from 10 queries per 1 update down to 1 query 
per 1.25 updates. We also examine update and query only service. This allows us to 
both examine the effect between updates and queries as well as finding a good point 
where buffer re-organisation is needed. We apply these transactions to all the indexes 
built (described above), both in the presence and absence of an index reorganisation. 
All figures produced are averages of 5 runs per experiment. For the one leaf 
experiments we use a client/server process. We record the raw index reorganisation 
speed to establish the best point to initiate it. We use a number of measures to 
examine the results. These are elapsed time in seconds, load imbalance (LI), speedup, 
and scaleability for transactions and index reorganisation and transaction throughput 
(transactions per hour). Equations for most of these metrics are declared in the 
Glossary. 
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6. Experimental results on transaction processing 
We have a number of aspects which we wish to examine by looking at the empirical 
results produced. The first of these is the issue of update performance (see section 
6.1). Is there a big performance penalty in only allowing one update at a time in the 
system? We also need to examine the transactions as a whole looking at aspects such 
as the interaction between queries and updates and its impact on performance (see 
section 6.2). Both updates and transactions are examined in the presence and absence 
of index reorganisation. The performance of index reorganisation is examined in 
section 6.3, together with a discussion on a good buffer size for the collections being 
examined. A summary of the experimental results is given in section 6.4. 
 
 
Take in Figure 2. BASE1 [DocId]: average elapsed time in ms for update 
transactions (postings only) 
Take in Figure 3. BASE1 [TermId]: average elapsed time in ms for update 
transactions (postings only) 
Take in Figure 4. BASE1 [DocId]: average elapsed time in ms for update 
transactions (position data) 
Take in Figure 5. BASE1 [TermId]: average elapsed time in ms for update 
transactions (position data 
 
 
6.1 Performance of update transactions 
As there is no general criterion for response time for update transactions as there is for 
query transactions (Frakes, 1992) we need to define one here. The criterion we use is 
that updates should be done within 1/10th of a second (or 100 milliseconds). This 
strict criterion is chosen because we want to ensure that queries are not delayed much, 
although users who submit documents for update would prefer a fast response. The 
elapsed time for update transactions is quite small for most runs (see Figures 2 to 5). 
All times are under 100 milliseconds and times do reduce with increasing numbers of 
leaf nodes. There are two main observations from this. The first is that update 
transaction elapsed times meet our criterion and are therefore acceptable in our terms. 
Any delays by blocking other transactions while an update is done are therefore small. 
The second is that speedup is found in systems using parallelism, which is surprising 
given the restrictions on parallelism with the type of update transaction processing 
implemented (see Figures 6 to 9). 
 
 
Take in Figure 6. BASE1 [DocId]: speedup for update transactions (postings only) 
Take in Figure 7. BASE1 [TermId]: speedup for update transactions (postings only) 
Take in Figure 8. BASE1 [DocId]: speedup for update transactions (position data) 
Take in Figure 9. BASE1 [TermId]: speedup for update transactions (position data) 
 
 
The results show that DocId partitioning has a much more beneficial effect on elapsed 
times than TermId partitioning and the advantage in elapsed time using multiple leaf 
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nodes is superior with DocId. The reasons for these effects are twofold: memory and 
communication. With DocId the increase in memory affects elapsed time positively, 
and communication is done with one leaf node only. This memory advantage is offset 
with extra communication with TermId as document data must be communicated to 
all leaf nodes. It should be noted that most of the conclusions drawn here apply to 
updates which record position data. The exception is that TermId partitioning in many 
cases does not meet the 100 millisecond criterion together with the single leaf nodes 
run (see Figure 5). 
 
 
Take in Figure 10. BASE1 [DocId]: average elapsed time in ms for update 
transactions during index reorganisation (postings only) 
Take in Figure 11. BASE1 [TermId]: average elapsed time in ms for update 
transactions during index reorganisation (postings only) 
Take in Figure 12. BASE1 [DocId]: average elapsed time in ms for update 
transactions during index reorganisation (position data) 
Take in Figure 13. BASE1 [TermId]: average elapsed time in ms for update 
transactions during index reorganisation (position data) 
 
 
Figures 10 to 13 show the effect of initiating an index reorganisation while serving 
update transactions. Elapsed times on both types of partitioning method are increased, 
but DocId partitioning is much better able to handle the resource contention than 
TermId. In terms of our 100 millisecond criterion, DocId meets our requirement while 
TermId partitioning does not. While DocId runs show reduction in elapsed time over 
multiple leaf nodes, TermId runs actually record a reduction in performance. The 
reason for this is simple: index reorganisation on DocId partitioned inverted file is 
done on much shorter lists. Therefore a request for transaction service on TermId 
partitioning is more likely to be delayed, hence the increase in percentage terms for 
elapsed time over DocId as shown in Figures 14 to 17. With respect to indexes which 
contain position data, most runs, apart from a few on DocId partitioning, exceed the 
100 millisecond criterion. TermId partitioning runs are particularly badly affected with 
some runs registering an increase of around three hundred per cent over elapsed times 
when index reorganisation is done. 
 
 
Take in Figure 14. BASE1 [DocId]: % increase in average elapsed time for update 
transactions during index reorganisation (postings only) 
Take in Figure 15. BASE 1 [Termld]: % increase in average elapsed time for update 
transactions during index reorganisation (postings only) 
Take in Figure 16. BASE 1 [Docld] % increase in average elapsed time for update 
transactions during index reorganisation (position data) 
Take in Figure 17. BASE 1 [Termld]: % increase in average elapsed time for update 
transactions during index reorganisation (position data) 
 
 
Take in Table II. BASE1/BASE10 [DocId]: index update results for update 
transactions 
 



 7 

 

Table II shows the details of comparable BASE1 and BASE10 runs using the DocId 
partitioning method. It should be noted that BASE10 runs are slightly higher than our 
criterion for elapsed times for update. It may not therefore be possible to set such a 
strict criterion for larger databases, and we may have to relax our requirements to, say, 
a second. All BASE10 elapsed times are under a second, even updates done on 
indexes with position data while an index reorganisation is being done. The scalability 
for update transactions on the BASE10 collection is very good indeed, particularly for 
indexes with postings only data. The scalability reduces while index reorganisation is 
being done, but is still good. 
 
6.2 Performance of transactions as a whole 
The average elapsed time for transactions as a whole is very good with all times under 
a second, including BASE10 experiments. Figures 18 to 21 show average elapsed 
times for transactions on the BASE1 collection using all types of indexes and 
partitioning methods. 
 
 
Take in Figure 18. BASE1 [DocId]: transaction average elapsed times in ms 
(postings only) 
Take in Figure 19. BASE1 [TermId]: transaction average elapsed times in ms 
(postings only) 
Take in Figure 20. BASE1 [DocId]: transaction average elapsed times in ms 
(position data) 
Take in Figure 21. BASE1 [TermId]: transaction average elapsed times in ms 
(position data) 
 
 
From these elapsed times it can be seen that there is a reduction in average time when 
the number of update transactions is increased and when DocId partitioning is used. 
The reduction due to increased level of updates is because updates are smaller in 
average time and will reduce the average transaction time. The DocId partitioning 
method outperforms TermId quite considerably on any of the transaction sets used. 
The performance problem found with runs on TermId partitioning in previous 
experiments (MacFarlane et al., 2000) severely affect the overall performance of those 
runs. No real speed advantage by the use of parallelism is demonstrated in any of the 
TermId partitioning experiments. In fact slowdown is registered for all parallel runs on 
indexes with postings only data (see Figure 23). Speed advantage on indexes 
containing position data is recorded, but is very slight (see Figure 25). With DocId 
partitioning we do gain speed advantage using parallelism (see Figures 22 and 24), but 
the proportion of updates in the transaction set may actually increase the average 
elapsed time when more leaf nodes are used (see Figures 18 and 20). The level of 
parallelism which can be successfully deployed depends on the balance in time 
between updates and queries, at the point where gain in parallelism is outweighed by 
loss in servicing updates.  
 
 
Take in Figure 22. BASE 1 [Docld]: speedup for all transactions (postings only) 
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Take in Figure 23. BASE 1 [Termld]: speedup for all transactions (postings only) 
Take in Figure 24. BASE 1 [Docld]: speedup for all transactions (position data) 
Take in Figure 25. BASE 1 [Termld]: speedup for all transactions (position data) 
 
 
Figures 26 to 29 show the effect of index reorganisation on transactions serviced over 
BASE1 collection. The results show that DocId partitioning outperforms TermId if an 
elapsed time criterion is used. While runs on DocId partitioning using parallelism 
reduce run times over the client/server runs, TermId runs actually increase in time. 
This evidence is consistent with the update transaction results described above. 
However, it is clear that DocId partitioning after a certain parallel machine size holds 
the run times constant, and the ability to cope with resource contention is far superior 
to that of TermId. There is some doubt as to the wisdom of deploying parallelism after 
a given point, but other factors such as the total time for an index reorganisation are 
important. Our choice of either parallelism or the actual level of parallelism will 
depend on the balance between normal transaction processing and transaction 
processing during an index update. A further interesting observation is that transaction 
sets with more update transactions are less affected by resource contention than others 
with more query transactions, which is particularly noticeable in TermId results (see 
Figures 27 and 29). The reason for this is that update transactions are faster than query 
transactions and are therefore much less affected when the index is being updated. 
 
 
Take in Figure 26. BASE1 [DocId]: average elapsed time in ms for all transactions 
during index reorganisation (postings only) 
Take in Figure 27. BASE1 [TermId]: average elapsed time in ms for all transactions 
during index reorganisation (postings only) 
Take in Figure 28. BASE1 [DocId]: average elapsed time in ms for all transactions 
during index reorganisation (position data) 
Take in Figure 29. BASE1 [TermId]: average elapsed time in ms for all transactions 
during index reorganisation (position data) 
 
 
What effect do these results have on throughput? In Figures 30 to 34 the throughput 
figures are declared, with the data separated into transaction sets. The suffix "ro" in 
the diagrams signifies that the run was done in the presence of an index 
reorganisation. The throughput measure is thousands of transactions per hour. 
 
 
Take in Figure 30. BASE1: combined transactions throughput for UPDATE1 
transaction set 
Take in Figure 31. BASE1: combined transactions throughput for UPDATE2 
transaction set 
Take in Figure 32. BASE1: combined transactions throughput for UPDATE3 
transaction set 
Take in Figure 33. BASE1: combined transactions throughput for UPDATE4 
transaction set 
Take in Figure 34. BASE1: combined transactions throughput for UPDATE 
transaction set 



 9 

 
 
The main conclusion from these throughput results is that DocId partitioning 
outperforms TermId using any type of index (as would be expected from the elapsed 
time data). Using this measure demonstrates how disappointing the performance of 
TermId actually is: throughput is not improved by the addition of extra leaf nodes. 
Many runs are limited to a throughput of 20k transactions per hour. The best 
performing index type/partitioning pair is DocId with postings only indexes on any of 
the transaction sets. It can be seen in the diagrams through DocId with postings only 
data that the transaction set has an impact on trends in throughput. For example, on 
the UPDATE1 set there is a clear increase in throughput for increasing numbers of 
leaf nodes, while throughput on the UPDATE set shows a clear tailing off effect with 
larger numbers of leaf nodes (see Figures 30 and 34). Throughput on the index 
type/partitioning method relative to each other is consistent irrespective of the 
transaction set under scrutiny. 
 
 
Take in Figure 35. BASE1 [DocId]: load imbalance for all transactions (postings 
only) 
Take in Figure 36. BASE1 [DocId]: load imbalance for all transactions (position 
data) 
Take in Figure 37. BASE1 [TermId]: load imbalance for all transactions (postings 
only) 
Take in Figure 38. BASE1 [TermId]: load imbalance for all transactions (position 
data) 
 
 
How does load imbalance affect the results given above? Load imbalance does not 
appear to be a significant problem: Figures 35 to 38 show the overall level of load 
imbalance for all transactions. It can be seen that imbalance is higher in DocId than it 
is in TermId, for both types of indexes. The imbalance figures for all results are 
relatively small, but clearly there is an increase in imbalance with increasing parallel 
machine size on DocId, while imbalance on TermId remains fairly constant. The key 
result here is that document updates do not harm overall load imbalance significantly. 
The “round robin” method of distributing document updates to nodes when DocId 
partitioning is used is a reasonable method. The results also show that it may be 
possible to offer better concurrent transaction service on TermId partitioning than 
DocId partitioning (this is consistent with imbalance results found in probabilistic 
search (MacFarlane et al., 2000)). 
 
 
Take in Table III. BASE1/BASE10 [DocId]: index update results for all transactions 
 
 
Table III shows the scalability results for all transactions. Average elapsed times for 
BASE10 runs during normal transaction processing are all under half a second when 
postings only indexes are used and under a second for position data indexes. The 
delays on BASE10 while indexes are updated are considerable and runs are over 
double, a factor particularly significant for indexes with position data. It may not be 
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viable to use the index update method for this task, particularly if queries are delayed 
beyond the 10 second elapsed time recommendation (Frakes, 1992) during an index 
reorganisation on much larger collections. Scalability is very good and increases with 
the number of updates in a transaction: as would be expected since updates provide 
much better scalability than queries (see Table II). Elapsed times trends are inverse to 
that of scalability and for the same reason. 
 
It is clear that within our experimental framework the best partitioning method for 
transaction processing is DocId. Both the experiments discussed here and work 
discussed throughout this paper show that DocId partitioning provides better 
performance both in normal transaction processing and when an index reorganisation 
is initiated for all types of transactions. However, the imbalance figures demonstrate 
that concurrent transaction processing might work well on TermId partitioning, a 
conclusion which reinforces our previous experience with search (MacFarlane et al., 
2000). Scalability of transactions using DocId partitioning is good, but results 
demonstrate that the index update task defined here may not be a viable solution for 
much larger collections than ones considered here. 
 
6.3 Performance of index reorganisation 
The results found in our index reorganisation performance confirm that it is better to 
wait for a given period and do the reorganisation collectively than do it on a one 
document basis (Shoens et al., 1994). Figures 39 to 42 show the index reorganisation 
results using elapsed time in seconds. 
 
Take in Figure 39. BASE1 [DocId]: index reorganisation elapsed time in seconds 
(postings only) 
Take in Figure 40. BASE1 [DocId]: index reorganisation elapsed time in seconds 
(position data) 
Take in Figure 41. BASE1 [TermId]: index reorganisation elapsed time in seconds 
(postings only) 
Take in Figure 42. BASE1 [TermId]: index reorganisation elapsed time in seconds 
(position data) 
 
 
Above all these figures show how expensive index reorganisations are, particularly for 
indexes with position data. It should be noted that these figures are much reduced 
from a method which would require a reorganisation of the whole index. The best 
buffer size for this data is 500 documents: there is very little difference between 
reorganisations done on buffer sizes of 500 documents and 400 documents, 
particularly for indexes with position data. There is an increase in the elapsed time for 
increasing buffer size on all runs, but the increase is not linear with the number of 
documents in the buffer: the results on multiple leaf nodes are the same. Comparing 
the partitioning methods, elapsed times on DocId are better than TermId using all 
buffer sizes and on all multiple leaf nodes runs apart from 2 leaf nodes on a 500 
document buffer. Speed advantage is shown in both partitioning methods by 
increasing the leaf nodes set in a run. Figures 43 to 46 show the speedup for index 
reorganisation on both partitioning methods. 
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Take in Figure 43. BASE1 [DocId]: index reorganisation speedup (postings only) 
Take in Figure 44. . BASE1 [DocId]: index reorganisation speedup (position data) 
Take in Figure 45. BASE1 [TermId]: index reorganisation speedup (postings only) 
Take in Figure 46. BASE1 [TermId]: index reorganisation speedup (position data) 
 
 
Good speed advantage is shown by any number of leaf nodes using any type of 
partitioning method. Super-linear speedup is shown on both partitioning methods, 
apart from TermId, on any run using 6 leaf nodes with any type of index. The run on 6 
leaf nodes on an 80 document buffer is particularly disappointing considering the 
other results. We will return to this factor when discussing load imbalance below. 
Why does this super-linear speedup occur? If we examine the total time needed for an 
index reorganisation we find that all parallel runs reduce the total time for an index 
reorganisation. Figures 47 and 48 show the underlying reason why the super-linear 
speedup occurs. 
 
 
Take in Figure 47. BASE1 [DocId]: millions of postings handled during index 
reorganisation 
Take in Figure 48. BASE1 [TermId]: millions of postings handled during index 
reorganisation 
 
 
The total number of posting records handled for DocId actually reduces with 
increasing numbers of leaf nodes, but TermId runs move much the same amount of 
data. The reason for this effect in DocId partitioning is that as the number of leaf 
nodes is increased, the more frequent terms which both the buffer and index shared 
are spread over more blocks which have fewer records associated with them. The 
more frequent occurring terms are interspersed among less frequent terms as more 
blocks are handled. This effect does not happen on TermId partitioning as much the 
same blocks will be handled by parallel runs of any leaf node size. There is some 
variation in TermId but the effect is minimal. Note that the number of postings moved 
for a 500 document buffer is always slightly more than those for a 400 document 
buffer. The total number of postings in BASE1 collection is 22.6 million: just over 
half the index is reorganised for just 500 documents, reducing with increasing 
numbers of leaf nodes. The evidence suggests that a good buffer size for this data is 
500 documents. 
 
From the evidence given above there is clearly an offset between the advantage gained 
in DocId partitioning by increasing the number of leaf nodes and improvements in 
performance gained by waiting until the buffer has reached a given size. We can 
therefore make a case for delaying the initiation of index reorganisation on more leaf 
nodes until their buffers contain more documents. In this way we can take advantage 
of both effects discussed, i.e. less data movement on more leaf nodes and less time 
when an index update is being done. Figs 49 to 52 provides more evidence of the 
increased buffer effect on load imbalance. 
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Take in Figure 49. BASE1 [DocId]: index reorganisation load imbalance (postings 
only) 
Take in Figure 50. BASE1 [TermId]: index reorganisation load imbalance (postings 
only) 
Take in Figure 51. BASE1 [DocId]: index reorganisation load imbalance (position 
data 
Take in Figure 52. BASE1 [TermId]: index reorganisation load imbalance (position 
data) 
 
The imbalance figures for DocId partitioning show that initiating index 
reorganisations with a 40 document buffer does not yield good load balance. 
Increasing the leaf nodes set size also has a tendency to increase imbalance. The 
TermId partitioning method is generally more consistent, but imbalance on six leaf 
nodes for any buffer size is noticeably worse than for other leaf nodes. This is a failure 
of the distribution process which relies on a heuristic to distribute data to leaf nodes. 
This has a direct and significant impact on speedup for TermId partitioning runs for 6 
leaf nodes (see figs 45 and 46). 
 
 
6.4 Summary of experimental results 
In all aspects of transaction processing and index reorganisation, DocId partitioning is 
shown to be superior to TermId partitioning. For update transactions both methods are 
quick when data is added to the buffer, but DocId provides better transaction 
performance when an index reorganisation is being executed. Many update 
transactions meet our 100 millisecond requirement for elapsed times for document 
insertions. For transactions with both updates and queries, DocId is superior largely 
because of the performance improvement which is obtained with that method, shown 
in previous experiments with probabilistic search (MacFarlane et al., 2000). The total 
number of records moved during index reorganisation is reduced with increasing 
numbers of leaf nodes when DocId partitioning is used. There is, however, an offset 
between the buffer size for incoming updates and increasing the leaf nodes set in order 
to reduce the amount of data moved. Overall our empirical results demonstrate that 
DocId partitioning is the preferred method for servicing the inverted file index 
maintenance techniques outlined in this paper. One might question the viability of the 
method of index update, if queries are delayed beyond the 10 second response time 
recommended by Frakes (1992) or updates are delayed more than the 100 millisecond 
or 1 second requirement recommended in this paper. This issue will be examined 
further in the conclusion. 
 
 
Conclusion 
The empirical results from this research show that in all aspects of both transaction 
processing and index reorganisation, the DocId partitioning method is far superior. 
Problems highlighted in our probabilistic search experiments (MacFarlane et al., 
2000) impose severe restrictions on transaction processing when the TermId method is 
used, which are difficult to solve within our experimental context. These problems 
(most notably the sort aspect of search) had an impact on the relative difference 
between the two partitioning methods during transaction processing. In index 
reorganisation when using DocId partitioning, the amount of data which needs to be 
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moved reduces with increasing leaf node set size due to the qualities of the keyword 
set for each element of the leaf nodes set (the assumption made in the synthetic model 
was correct). Providing the same term block strategy was used, this effect will be a 
generic one. We have found evidence, however, that TermId might be useful in a 
concurrent transaction processing context, and this would have to be the focus for any 
future research. 
 
It may be the case that the methods outlined in this paper for dealing with new 
documents may not be viable in a realistic situation: we could consider a scenario 
where the update rate was so high buffer space would run out, thereby crashing the 
system or cause a denial of service. Such a problem would occur when there are more 
updates being submitted to the system than it can handle, so that the time to re-
organise an index with these new updates is greater than the actual time available on 
the system. There are limits to a method of storage such as inverted file which is 
designed for fast search and which is expensive to maintain: therefore, for these high 
update applications some other method of transaction processing and storage method 
is required. Where our methods are not useable we would recommend the use of a two 
phase signature search (Cringean et al., 1990) which allow for cheap updates, but also 
allow for a high degree of parallelism. 
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Glossary 
 

Distributed Build Method of building indexes where text is distributed from a single node. 
DocId Parititioning method which assigns all document data for a given document 

to one index partition 
Efficiency Measure of the effective use of processors. Definition: 

Speedup on n processors/n processors 
LI  A measure of the amount of load imbalance on n processors: 

max time on n processors/average time on n processors 
Local Build Method of indexing where all processing is kept local to the node. 
Mhz Megahertz: processor clock speed. 
Partition Fragment of inverted file on a nodes disk. 
Scalability A measure of how well the algorithm scales on the same equipment. 

Definition: 
Time on small collection         Size of large collection  
--------------------------------     *    -----------------------------  
Time on large collection          Size of small collection 

Speedup Measure of speed advantage of parallelism. Definition: 
Time on 1 processors / Time on n processors. 

TermId Parititioning method which assigns all term data for a given term to one 
partition 

TREC Annual Text Retrieval Conference run by the National Institute of Standards 
and Technology in the United  States. 

VLC Very Large Collection: Collection of 100 GB web data used in the TREC-7 
VLC2 sub-track. 
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Figure 1. Example of transaction topology configuration 
 

 
 
 

0

20

40

60

80

100

1 2 3 4 5 6 7

Leaf nodes

T
im

e
: 

m
s

update

update1

update2

update3

update4

 
Figure 2. BASE1 [DocId]: average elapsed 

time in ms for update transactions  
(postings only) 
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Figure 3. BASE1 [TermId]: average elapsed 

time in ms for update transactions  
(postings only) 
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Figure 4. BASE1 [DocId]: average elapsed 
time in ms for update transactions  

(position data) 
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Figure 5. BASE1 [TermId]: average elapsed 
time in ms for update transactions  

(position data) 
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Figure 6. BASE1 [DocId]: speedup for 

update transactions (postings only) 
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Figure 7. BASE1 [TermId]: speedup for 

update transactions (postings only) 
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Figure 8. BASE1 [DocId]: speedup for 

update transactions (position data) 
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Figure 9. BASE1 [TermId]: speedup for 

update transactions (position data) 
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Figure 10. BASE1 [DocId]: average elapsed 
time in ms for update transactions during 

index reorganisation (postings only) 
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Figure 11. BASE1 [TermId]: average 
elapsed time in ms for update transactions 
during index reorganisation (postings only) 
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Figure 12. BASE1 [DocId]: average elapsed 
time in ms for update transactions during 

index reorganisation (position data) 
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Figure 13. BASE1 [TermId]: average 
elapsed time in ms for update transactions 
during index reorganisation (position data) 
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Figure 14. BASE1 [DocId]: % increase in 
average elapsed time for update transactions 
during index reorganisation (postings only) 
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Figure 15. BASE1 [TermId]: % increase in 
average elapsed time for update transactions 

during index reorganisation (postings 
only)
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Figure 16. BASE1 [DocId]: % increase in 
average elapsed time for update transactions 
during index reorganisation (position data) 
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Figure 17. BASE1 [TermId]: % increase in 
average elapsed time for update transactions 
during index reorganisation (position data) 
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Figure 18. BASE1 [DocId]: transaction 
average elapsed times in ms (postings only) 
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Figure 19. BASE1 [TermId]: transaction 

average elapsed times in ms (postings only) 
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Figure 20. BASE1 [DocId]: transaction 
average elapsed times in ms (position data) 
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Figure 21. BASE1 [TermId]: transaction 

average elapsed times in ms (position data) 
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Figure 22. BASE1 [DocId]: speedup for all 
transactions (postings only) 
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Figure 23. BASE1 [TermId]: speedup for all 
transactions (postings only) 
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Figure 24. BASE1 [DocId]: speedup for all 
transactions (position data) 
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Figure 25. BASE1 [TermId]: speedup for all 
transactions (position data) 
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Figure 26. BASE1 [DocId]: average elapsed 
time in ms for all transactions during index 

reorganisation (postings only) 
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Figure 27. BASE1 [TermId]: average 

elapsed time in ms for all transactions during 
index reorganisation (postings only) 
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Figure 28. BASE1 [DocId]: average elapsed 
time in ms for all transactions during index 

reorganisation (position data) 
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Figure 29. BASE1 [TermId]: average 

elapsed time in ms for all transactions during 
index reorganisation (position data) 
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Figure 30. BASE1: combined transactions 
throughput for UPDATE1 transaction set 
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Figure 31. BASE1: combined transactions 
throughput for UPDATE2 transaction set 

 

Leaf nodes

T
h

ro
u

g
h

p
u

t

k
/h

o
u

r

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7

DocId-NPOS

DocId-POS

TermId-NPOS

TermId-POS

DocId-NPOS-ro

DocId-POS-ro

TermId-NPOS-ro

TermId-POS-ro

 
Figure 32. BASE1: combined transactions 
throughput for UPDATE3 transaction set 
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Figure 33. BASE1: combined transactions 
throughput for UPDATE4 transaction set 
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Figure 34. BASE1: combined transactions throughput  

for UPDATE transaction set 
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Figure 35. BASE1 [DocId]: load imbalance 

for all transactions (postings only) 
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Figure 36. BASE1 [DocId]: load imbalance 

for all transactions (position data) 
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Figure 37. BASE1 [TermId]: load imbalance 

for all transactions (postings only) 
 

Leaf nodes

L
I

1

1.1

1.2

1.3

1.4

1.5

2 3 4 5 6 7

UPDATE1

UPDATE2

UPDATE3

UPDATE4

UPDATE

 
Figure 38. BASE1 [TermId]: load imbalance 
for all transactions (position data) 
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Figure 39. BASE1 [DocId]: index 
reorganisation elapsed time in seconds 

(postings only) 
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Figure 40. BASE1 [DocId]: index 
reorganisation elapsed time in seconds 

(position data) 
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Figure 41. BASE1 [TermId]: index 
reorganisation elapsed time in seconds 

(postings only) 
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Figure 42. BASE1 [TermId]: index 
reorganisation elapsed time in seconds 
(position data) 
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Figure 43. BASE1 [DocId]: index 

reorganisation speedup (postings only) 
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Figure 44. BASE1 [DocId]: index 

reorganisation speedup (position data) 
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Figure 45. BASE1 [TermId]: index 

reorganisation speedup (postings only) 
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Figure 46. BASE1 [TermId]: index 
reorganisation speedup (position data) 
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Figure 47. BASE1 [DocId]: millions of 

postings handled during index reorganisation 
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Figure 48. BASE1 [TermId]: millions of 
postings handled during index reorganisation 
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Figure 49. BASE1 [DocId]: index 

reorganisation load imbalance  
(postings only) 
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Figure 50. BASE1 [TermId]: index 

reorganisation load imbalance  
(postings only) 
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Figure 51. BASE1 [DocId]: index 
reorganisation load imbalance  

(position data) 
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Figure 52. BASE1 [TermId]: index 
reorganisation load imbalance  

(position data) 
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Table I. Details of transaction sets used in experiments 
 

Transaction  
set Name 

No of  
Updates 

No of 
Queries 

No of 
Transactions 

UPDATE1 40 400 440 
UPDATE2 80 400 480 
UPDATE3 200 400 600 
UPDATE4 400 400 800 
UPDATE 500 400 900 

 
 
Table II. BASE1/BASE10 [DocId]: index update results for update transactions 
 

Metric Collection UP UP1 UP2 UP3 UP4 
Postings Only (No Positions) 
Elapsed Time (ms) BASE1 

BASE10 
43 
109 

43 
124 

46 
124 

40 
121 

43 
123 

Scalability BASE10 3.97 3.46 3.72 3.33 3.51 
Elapsed Time (ms) 
during index update 

BASE1 
BASE10 

55 
268 

64 
380 

62 
359 

60 
310 

57 
299 

Scalability during 
index update 

BASE10 2.07 1.67 1.73 1.95 1.91 

Position Data 
Elapsed Time (ms) BASE1 

BASE10 
52 
202 

48 
265 

51 
261 

48 
243 

51 
246 

Scalability BASE10 2.55 1.83 1.97 1.98 2.06 
Elapsed Time (ms) 
during index update 

BASE1 
BASE10 

103 
621 

130 
971 

131 
975 

125 
892 

115 
817 

Scalability during 
index update 

BASE10 1.66 1.34 1.34 1.40 1.40 

 
 
Table III. BASE1/BASE10 [DocId]: index update results for all transactions 
 

Metric Collection UP UP1 UP2 UP3 UP4 
Postings Only (No Positions) 
Elapsed Time (ms) BASE1 

BASE10 
60 
257 

75 
479 

73 
440 

66 
363 

60 
280 

Scalability BASE10 2.35 1.56 1.66 1.83 2.14 
Elapsed Time (ms) 
during index update 

BASE1 
BASE10 

80 
551 

118 
1021 

112 
949 

98 
776 

82 
604 

Scalability during 
index update 

BASE10 1.46 1.15 1.18 1.26 1.36 

Position Data 
Elapsed Time (ms) BASE1 

BASE10 
72 
448 

103 
891 

97 
818 

84 
660 

73 
505 

Scalability BASE10 1.61 1.15 1.18 1.27 1.45 
Elapsed Time (ms) 
during index update 

BASE1 
BASE10 

159 
1368 

265 
2562 

246 
2364 

205 
1924 

167 
1517 

Scalability during 
index update 

BASE10 1.17 1.04 1.04 1.07 1.10 

 
 


