10 research outputs found
Heavy metals contaminating the environment of a progressive supranuclear palsy cluster induce tau accumulation and cell death in cultured neurons
Progressive supranuclear palsy (PSP) is a neurodegenerative disorder characterized by the presence of intracellular aggregates of tau protein and neuronal loss leading to cognitive and motor impairment. Occurrence is mostly sporadic, but rare family clusters have been described. Although the etiopathology of PSP is unknown, mutations in the MAPT/tau gene and exposure to environmental toxins can increase the risk of PSP. Here, we used cell models to investigate the potential neurotoxic effects of heavy metals enriched in a highly industrialized region in France with a cluster of sporadic PSP cases. We found that iPSC-derived iNeurons from a MAPT mutation carrier tend to be more sensitive to cell death induced by chromium (Cr) and nickel (Ni) exposure than an isogenic control line. We hypothesize that genetic variations may predispose to neurodegeneration induced by those heavy metals. Furthermore, using an SH-SY5Y neuroblastoma cell line, we showed that both heavy metals induce cell death by an apoptotic mechanism. Interestingly, Cr and Ni treatments increased total and phosphorylated tau levels in both cell types, implicating Cr and Ni exposure in tau pathology. Overall, this study suggests that chromium and nickel could contribute to the pathophysiology of tauopathies such as PSP by promoting tau accumulation and neuronal cell death
How cost-effective is it to leave perineal skin unsutured?
This paper describes a cost-effectiveness evaluation based on a randomized controlled trial comparing two policies for surgical repair of perineal trauma. Data were collected for 1780 women who were randomly allocated to either a two-stage postpartum perineal repair policy leaving the skin unsutured (n=890) or a three-stage postpartum perineal repair policy that required suturing of the skin (n=890). The two-stage postpartum perineal repair policy was found to reduce the risk of adverse outcomes at 10days and at 3months, without leading to a significant increase in health-care costs. A widespread adoption of a two-stage postpartum perineal repair policy leaving the skin unsutured following perineal trauma is likely to represent a cost-effective use of health-care resources
Test-retest reliability of an adaptive thermal pain calibration procedure in healthy volunteers
Quantitative sensory testing (QST) allows researchers to evaluate associations between noxious stimuli and acute pain in clinical populations and healthy participants. Despite its widespread use, our understanding of QST’s reliability is limited, as reliability studies have used small samples and restricted time windows. We examined the reliability of pain ratings in response to noxious thermal stimulation in 171 healthy volunteers (n = 99 female, n = 72 male) who completed QST on multiple visits ranging from 1 day to 952 days between visits. On each visit, participants underwent an adaptive pain calibration in which they experienced 24 heat trials and rated pain intensity after stimulus offset on a 0-10 Visual Analog Scale. We used linear regression to determine pain threshold, pain tolerance, and the correlation between temperature and pain for each session and examined the reliability of these measures. Threshold and tolerance were moderately reliable (Intra-class correlation [ICC]=0.66 and 0.67, respectively; p<.001), whereas temperature-pain correlations had low reliability (ICC=0.23). In addition, pain tolerance was significantly more reliable in female participants than male participants, and we observed similar trends for other pain sensitive measures. Our findings indicate that threshold and tolerance are largely consistent across visits, whereas sensitivity to changes in temperature vary over time and may be influenced by contextual factors
Risk Assessment for Children Exposed to Beach Sands Impacted by Oil Spill Chemicals
Due to changes in the drilling industry, oil spills are impacting large expanses of coastlines, thereby increasing the potential for people to come in contact with oil spill chemicals. The objective of this manuscript was to evaluate the health risk to children who potentially contact beach sands impacted by oil spill chemicals from the Deepwater Horizon disaster. To identify chemicals of concern, the U.S. Environmental Protection Agency’s (EPA’s) monitoring data collected during and immediately after the spill were evaluated. This dataset was supplemented with measurements from beach sands and tar balls collected five years after the spill. Of interest is that metals in the sediments were observed at similar levels between the two sampling periods; some differences were observed for metals levels in tar balls. Although PAHs were not observed five years later, there is evidence of weathered-oil oxidative by-products. Comparing chemical concentration data to baseline soil risk levels, three metals (As, Ba, and V) and four PAHs (benzo[a]pyrene, benz[a]anthracene, benzo[b]fluoranthene, and dibenz[a,h]anthracene) were found to exceed guideline levels prompting a risk assessment. For acute or sub-chronic exposures, hazard quotients, computed by estimating average expected contact behavior, showed no adverse potential health effects. For cancer, computations using 95% upper confidence limits for contaminant concentrations showed extremely low increased risk in the 10−6 range for oral and dermal exposure from arsenic in sediments and from dermal exposure from benzo[a]pyrene and benz[a]anthracene in weathered oil. Overall, results suggest that health risks are extremely low, given the limitations of available data. Limitations of this study are associated with the lack of toxicological data for dispersants and oil-spill degradation products. We also recommend studies to collect quantitative information about children’s beach play habits, which are necessary to more accurately assess exposure scenarios and health risks
Risk Assessment for Children Exposed to Beach Sands Impacted by Oil Spill Chemicals
Due to changes in the drilling industry, oil spills are impacting large expanses of coastlines, thereby increasing the potential for people to come in contact with oil spill chemicals. The objective of this manuscript was to evaluate the health risk to children who potentially contact beach sands impacted by oil spill chemicals from the Deepwater Horizon disaster. To identify chemicals of concern, the U.S. Environmental Protection Agency’s (EPA’s) monitoring data collected during and immediately after the spill were evaluated. This dataset was supplemented with measurements from beach sands and tar balls collected five years after the spill. Of interest is that metals in the sediments were observed at similar levels between the two sampling periods; some differences were observed for metals levels in tar balls. Although PAHs were not observed five years later, there is evidence of weathered-oil oxidative by-products. Comparing chemical concentration data to baseline soil risk levels, three metals (As, Ba, and V) and four PAHs (benzo[a]pyrene, benz[a]anthracene, benzo[b]fluoranthene, and dibenz[a,h]anthracene) were found to exceed guideline levels prompting a risk assessment. For acute or sub-chronic exposures, hazard quotients, computed by estimating average expected contact behavior, showed no adverse potential health effects. For cancer, computations using 95% upper confidence limits for contaminant concentrations showed extremely low increased risk in the 10−6 range for oral and dermal exposure from arsenic in sediments and from dermal exposure from benzo[a]pyrene and benz[a]anthracene in weathered oil. Overall, results suggest that health risks are extremely low, given the limitations of available data. Limitations of this study are associated with the lack of toxicological data for dispersants and oil-spill degradation products. We also recommend studies to collect quantitative information about children’s beach play habits, which are necessary to more accurately assess exposure scenarios and health risks