414 research outputs found
Structural and Physical Properties of CaFe4As3 Single Crystals
We report the synthesis, and structural and physical properties of CaFe4As3
single crystals. Needle-like single crystals of CaFe4As3 were grown out of Sn
flux and the compound adopts an orthorhombic structure as determined by X-ray
diffraction measurements. Electrical, magnetic, and thermal properties indicate
that the system undergoes two successive phase transitions occurring at TN1 ~
90 K and TN2 ~ 26 K. At TN1, electrical resistivities (\rho(b) and \rho(ac))
are enhanced while magnetic susceptibilities (\chi(b) and \chi(ac)) are reduced
in both directions parallel and perpendicular to the b-axis, consistent with
the scenario of antiferromagnetic spin-density-wave formation. At TN2, specific
heat reveals a slope change, and \chi(ac) decreases sharply but \chi(b) has a
clear jump before it decreases again with decreasing temperature. Remarkably,
both \rho(b) and \rho(ac) decrease sharply with thermal hysteresis, indicating
the first-order nature of the phase transition at TN2. At low temperatures,
\rho(b) and \rho(ac) can be described by {\rho} = {\rho}0 + AT^\alpha ({\rho}0,
A, and {\alpha} are constants). Interestingly, these constants vary with
applied magnetic field. The ground state of CaFe4As3 is discussed.Comment: 15 pages, 8 figures, Submitted to Physical Review
Surface and Bulk Structural Properties of Single Crystalline Sr3Ru2O7
We report temperature and thermal-cycling dependence of surface and bulk
structures of double-layered perovskite Sr3Ru2O7 single crystals. The surface
and bulk structures were investigated using low-energy electron diffraction
(LEED) and single-crystal X-ray diffraction (XRD) techniques, respectively.
Single-crystal XRD data is in good agreement with previous reports for the bulk
structure with RuO6 octahedral rotation, which increases with decreasing
temperature (~ 6.7(6)degrees at 300 K and ~ 8.1(2) degrees at 90 K). LEED
results reveal that the octahedra at the surface are much more distorted with a
higher rotation angle (~ 12 degrees between 300 and 80 K) and a slight tilt
((4.5\pm2.5) degrees at 300 K and (2.5\pm1.7) degrees at 80 K). While XRD data
confirms temperature dependence of the unit cell height/width ratio (i.e.
lattice parameter c divided by the average of parameters a and b) found in a
prior neutron powder diffraction investigation, both bulk and surface
structures display little change with thermal cycles between 300 and 80 K.Comment: 25 pages, 5 figures, 5 tables, to appear in Physical Review
Hypervelocity Impact Performance of 3D Printed Aluminum Panels
With the continued development of additive manufacturing methods, control over the shape of ligaments, cell regularity, and macroscopic shape can all be easily tuned. This capability allows for tailoring of component architecture and promotes potential mass savings in a space vehicle structure. Additionally, it allows one the flexibility of combining structural elements such as MMOD protection and vehicle stiffness for launch loads for an overall mass reduction. At NASA JSC this technology is being explored in many different ways with the goal being a multifunctional structural component. For this study, four different types of aluminum panels have been 3D printed for testing, three being of a body centric cubic (BCC) lattice structure core and one being kelvin cell structure core. All samples have a 5.33 cm (0.05) nominally thick aluminum face sheet printed on the front and back side of each panel, with all core materials having a 5.08 cm (2.0) nominal thickness (see Table 1 for test sample summary and Figures 1 2 for sample illustrations). These tests will evaluate the performance of 3D printed aluminum panels under hypervelocity impact (HVI) conditions. The hypervelocity impact tests are being conducted at the JSC White Sands Test Facility (WSTF) Remote Hypervelocity Test Laboratory (RHTL), located in Las Cruces, New Mexico. All tests will be conducted with a 3.4mm Al 2017-T4 sphere at 6.8 km/s impacting at 0 to surface normal (i.e., impacting with no obliquity). Each sample will be trapped between two metal frames, with gasket material residing between the sample and frame, which will be the shipping and testing configuration for all tests. There will be an Al 2017-T4 witness plate staged 5.08 cm (2.0) from each sample to capture signature of debris, if the rear face sheet of the sample were to perforate from the HVI test event
Lifeworld Inc. : and what to do about it
Can we detect changes in the way that the world turns up as they turn up? This paper makes such an attempt. The first part of the paper argues that a wide-ranging change is occurring in the ontological preconditions of Euro-American cultures, based in reworking what and how an event is produced. Driven by the security – entertainment complex, the aim is to mass produce phenomenological encounter: Lifeworld Inc as I call it. Swimming in a sea of data, such an aim requires the construction of just enough authenticity over and over again. In the second part of the paper, I go on to argue that this new world requires a different kind of social science, one that is experimental in its orientation—just as Lifeworld Inc is—but with a mission to provoke awareness in untoward ways in order to produce new means of association. Only thus, or so I argue, can social science add to the world we are now beginning to live in
Recommended from our members
Polycrystalline thin film materials and devices
Results of Phase II of a research program on polycrystalline thin film heterojunction solar cells are presented. Relations between processing, materials properties and device performance were studied. The analysis of these solar cells explains how minority carrier recombination at the interface and at grain boundaries can be reduced by doping of windows and absorber layers, such as in high efficiency CdTe and CuInSe{sub 2} based solar cells. The additional geometric dimension introduced by the polycrystallinity must be taken into consideration. The solar cells are limited by the diode current, caused by recombination in the space charge region. J-V characteristics of CuInSe{sub 2}/(CdZn)S cells were analyzed. Current-voltage and spectral response measurements were also made on high efficiency CdTe/CdS thin film solar cells prepared by vacuum evaporation. Cu-In bilayers were reacted with Se and H{sub 2}Se gas to form CuInSe{sub 2} films; the reaction pathways and the precursor were studied. Several approaches to fabrication of these thin film solar cells in a superstrate configuration were explored. A self-consistent picture of the effects of processing on the evolution of CdTe cells was developed
Recommended from our members
Development and Application of a Predictive Computational Tool for Short-Pulse, High-Intensity Target Interactions
The widely differing spatial, temporal, and density scales needed to accurately model the fast ignition process and other short-pulse laser-plasma interactions leads to a computationally challenging project that is difficult to solve using a single code. This report summarizes the work performed on a three year LDRD to couple together three independent codes using PYTHON to build a new integrated computational tool. An example calculation using this new model is described
- …