78 research outputs found

    Differentiation between polaron-pair and triplet-exciton polaron spin-dependent mechanisms in organic light-emitting diodes by coherent spin beating

    Get PDF
    Pulsed electrically detected magnetic resonance offers a unique avenue to distinguish between polaron-pair (PP) and triplet-exciton polaron (TEP) spin-dependent recombination, which control the conductivity and magnetoresistivity of organic semiconductors. Which of these two fundamental processes dominates depends on carrier balance: by injecting surplus electrons we show that both processes simultaneously impact the device conductivity. The two mechanisms are distinguished by the presence of a half-field resonance, indicative of TEP interactions, and transient spin beating, the signature of PPs. Coherent spin Rabi flopping in the half-field (triplet) channel is observed, demonstrating that the triplet exciton has an ensemble phase coherence time of at least 60 ns, offering insight into the effect of carrier correlations on spin dephasing

    Slow Hopping and Spin Dephasing of Coulombically Bound Polaron Pairs in an Organic Semiconductor at Room Temperature

    Get PDF
    Polaron pairs are intermediate electronic states that are integral to the optoelectronic conversion process in organic semiconductors. Here, we report on electrically detected spin echoes arising from direct quantum control of polaron pair spins in an organic light-emitting diode at room temperature. This approach reveals phase coherence on a microsecond time scale, and offers a direct way to probe charge recombination and dissociation processes in organic devices, revealing temperature-independent intermolecular carrier hopping on slow time scales. In addition, the long spin phase coherence time at room temperature is of potential interest for developing quantum-enhanced sensors and information processing systems which operate at room temperature

    The effect of low-energy ion-implantation on the electrical transport properties of Si-SiO2 MOSFETs

    Full text link
    Using silicon MOSFETs with thin (5nm) thermally grown SiO2 gate dielectrics, we characterize the density of electrically active traps at low-temperature after 16keV phosphorus ion-implantation through the oxide. We find that, after rapid thermal annealing at 1000oC for 5 seconds, each implanted P ion contributes an additional 0.08 plus/minus 0.03 electrically active traps, whilst no increase in the number of traps is seen for comparable silicon implants. This result shows that the additional traps are ionized P donors, and not damage due to the implantation process. We also find, using the room temperature threshold voltage shift, that the electrical activation of donors at an implant density of 2x10^12 cm^-2 is ~100%.Comment: 11 pages, 10 figure

    Electrically-detected magnetic resonance in ion-implanted Si:P nanostructures

    Full text link
    We present the results of electrically-detected magnetic resonance (EDMR) experiments on silicon with ion-implanted phosphorus nanostructures, performed at 5 K. The devices consist of high-dose implanted metallic leads with a square gap, into which Phosphorus is implanted at a non-metallic dose corresponding to 10^17 cm^-3. By restricting this secondary implant to a 100 nm x 100 nm region, the EDMR signal from less than 100 donors is detected. This technique provides a pathway to the study of single donor spins in semiconductors, which is relevant to a number of proposals for quantum information processing.Comment: 9 pages, 3 figure

    T1T_1- and T2T_2-spin relaxation time limitations of phosphorous donor electrons near crystalline silicon to silicon dioxide interface defects

    Full text link
    A study of donor electron spins and spin--dependent electronic transitions involving phosphorous (31^{31}P) atoms in proximity of the (111) oriented crystalline silicon (c-Si) to silicon dioxide (SiO2_{2}) interface is presented for [31^{31}P] = 1015^{15} cm3\mathrm{cm}^{-3} and [31^{31}P] = 1016^{16} cm3\mathrm{cm}^{-3} at about liquid 4^4He temperatures (T=5T = 5 K15\mathrm{K} - 15 K\mathrm{K}). Using pulsed electrically detected magnetic resonance (pEDMR), spin--dependent transitions between the \Phos donor state and two distinguishable interface states are observed, namely (i) \Pb centers which can be identified by their characteristic anisotropy and (ii) a more isotropic center which is attributed to E^\prime defects of the \sio bulk close to the interface. Correlation measurements of the dynamics of spin--dependent recombination confirm that previously proposed transitions between \Phos and the interface defects take place. The influence of these electronic near--interface transitions on the \Phos donor spin coherence time T2T_2 as well as the donor spin--lattice relaxation time T1T_1 is then investigated by comparison of spin Hahn--echo decay measurements obtained from conventional bulk sensitive pulsed electron paramagnetic resonance and surface sensitive pEDMR, as well as surface sensitive electrically detected inversion recovery experiments. The measurements reveal that both T2T_2 and T1T_1 of \Phos donor electrons spins in proximity of energetically lower interface states at T13T\leq 13 K are reduced by several orders of magnitude

    Broadband electrically detected magnetic resonance of phosphorus donors in a silicon field-effect transistor

    Full text link
    We report electrically detected magnetic resonance of phosphorus donors in a silicon field-effect transistor. An on-chip transmission line is used to generate the oscillating magnetic field allowing broadband operation. At milli-kelvin temperatures, continuous wave spectra were obtained up to 40 GHz, using both magnetic field and microwave frequency modulation. The spectra reveal the hyperfine-split electron spin resonances characteristic for Si:P and a central feature which displays the fingerprint of spin-spin scattering in the two-dimensional electron gas.Comment: 4 pages, 4 figures, submitted to AP

    Differentiation between polaron-pair and triplet-exciton polaron spin-dependent mechanisms in organic light-emitting diodes by coherent spin beating

    Get PDF
    Pulsed electrically detected magnetic resonance offers a unique avenue to distinguish between polaron-pair (PP) and triplet-exciton polaron (TEP) spin-dependent recombination, which control the conductivity and magnetoresistivity of organic semiconductors. Which of these two fundamental processes dominates depends on carrier balance: by injecting surplus electrons we show that both processes simultaneously impact the device conductivity. The two mechanisms are distinguished by the presence of a half-field resonance, indicative of TEP interactions, and transient spin beating, the signature of PPs. Coherent spin Rabi flopping in the half-field (triplet) channel is observed, demonstrating that the triplet exciton has an ensemble phase coherence time of at least 60 ns, offering insight into the effect of carrier correlations on spin dephasing

    Electrical detection of 31P spin quantum states

    Get PDF
    In recent years, a variety of solid-state qubits has been realized, including quantum dots, superconducting tunnel junctions and point defects. Due to its potential compatibility with existing microelectronics, the proposal by Kane based on phosphorus donors in Si has also been pursued intensively. A key issue of this concept is the readout of the P quantum state. While electrical measurements of magnetic resonance have been performed on single spins, the statistical nature of these experiments based on random telegraph noise measurements has impeded the readout of single spin states. In this letter, we demonstrate the measurement of the spin state of P donor electrons in silicon and the observation of Rabi flops by purely electric means, accomplished by coherent manipulation of spin-dependent charge carrier recombination between the P donor and paramagnetic localized states at the Si/SiO2 interface via pulsed electrically detected magnetic resonance. The electron spin information is shown to be coupled through the hyperfine interaction with the P nucleus, which demonstrates the feasibility of a recombination-based readout of nuclear spins
    corecore