93 research outputs found

    Prediction of remaining life of power transformers based on left truncated and right censored lifetime data

    Get PDF
    Prediction of the remaining life of high-voltage power transformers is an important issue for energy companies because of the need for planning maintenance and capital expenditures. Lifetime data for such transformers are complicated because transformer lifetimes can extend over many decades and transformer designs and manufacturing practices have evolved. We were asked to develop statistically-based predictions for the lifetimes of an energy company's fleet of high-voltage transmission and distribution transformers. The company's data records begin in 1980, providing information on installation and failure dates of transformers. Although the dataset contains many units that were installed before 1980, there is no information about units that were installed and failed before 1980. Thus, the data are left truncated and right censored. We use a parametric lifetime model to describe the lifetime distribution of individual transformers. We develop a statistical procedure, based on age-adjusted life distributions, for computing a prediction interval for remaining life for individual transformers now in service. We then extend these ideas to provide predictions and prediction intervals for the cumulative number of failures, over a range of time, for the overall fleet of transformers.Comment: Published in at http://dx.doi.org/10.1214/00-AOAS231 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Final Report: An Undergraduate Minor in Wind Energy at Iowa State University

    Full text link
    This report describes an undergraduate minor program in wind energy that has been developed at Iowa State University. The minor program targets engineering and meteorology students and was developed to provide interested students with focused technical expertise in wind energy science and engineering, to increase their employability and ultimate effectiveness in this growing industry. The report describes the requirements of the minor program and courses that fulfill those requirements. Five new courses directly addressing wind energy have been developed. Topical descriptions for these five courses are provided in this report. Six industry experts in various aspects of wind energy science and engineering reviewed the wind energy minor program and provided detailed comments on the program structure, the content of the courses, and the employability in the wind energy industry of students who complete the program. The general consensus is that the program is well structured, the course content is highly relevant, and students who complete it will be highly employable in the wind energy industry. The detailed comments of the reviewers are included in the report

    Retention characteristics of some antibiotic and anti-retroviral compounds in hydrophilic interaction chromatography using isocratic elution, and gradient elution with repeatable partial equilibration

    Get PDF
    © 2018 Elsevier B.V. The separation of some zwitterionic, basic and neutral antibiotic and antiretroviral compounds was studied using hydrophilic interaction chromatography (HILIC) on bare silica, bonded amide and urea superficially porous phases. The differences in the selectivity and retentivity of these stationary phases were evaluated for compounds with widely different physicochemical properties (logD −3.43 to 2.41 at ww pH 3.0). The mobile phase was acetonitrile-ammonium formate buffered at low ww pH. Compounds containing quinolone and serine groups showed poor peak shapes on all columns, attributed to metal-oxide interactions with system metals. Peak shapes were improved by addition of citrate buffers. Gradient elution, particularly with regard to column equilibration, was also studied due to the large differences in retention factors observed under isocratic conditions. Full equilibration in HILIC was slow for both ionogenic and neutral solutes, requiring as much as ∼40 column volumes. However, highly repeatable partial equilibration, suitable for gradient elution, was achieved in only a few minutes. Pronounced selectivity differences in the separations were shown dependent on the partial equilibration time

    Economic Modeling of Compressed Air Energy Storage

    Get PDF
    Due to the variable nature of wind resources, the increasing penetration level of wind power will have a significant impact on the operation and planning of the electric power system. Energy storage systems are considered an effective way to compensate for the variability of wind generation. This paper presents a detailed production cost simulation model to evaluate the economic value of compressed air energy storage (CAES) in systems with large-scale wind power generation. The co-optimization of energy and ancillary services markets is implemented in order to analyze the impacts of CAES, not only on energy supply, but also on system operating reserves. Both hourly and 5-minute simulations are considered to capture the economic performance of CAES in the day-ahead (DA) and real-time (RT) markets. The generalized network flow formulation is used to model the characteristics of CAES in detail. The proposed model is applied on a modified IEEE 24-bus reliability test system. The numerical example shows that besides the economic benefits gained through energy arbitrage in the DA market, CAES can also generate significant profits by providing reserves, compensating for wind forecast errors and intra-hour fluctuation, and participating in the RT market

    Practical observations on the performance of bare silica in hydrophilic interaction compared with C18 reversed-phase liquid chromatography

    Get PDF
    The kinetic performance of a bare silica and C18 phase prepared from the same sub-2. μm and 3.5. μm base materials were compared in the HILIC and RP mode using both charged and neutral solutes. The HILIC column was characterised using the neutral solute 5-hydroxymethyluridine, the weak base cytosine, and the strong base nortriptyline, the latter having sufficient retention also in the RP mode to allow comparison of performance. Naphthalene was also used as a simple neutral substance to evaluate the RP column alone. The retention factors of all substances were adjusted to give similar values (k'. ~. 5.5) at their respective optimum linear velocities. Reduced van Deemter b-coefficients (determined by curve fitting and by the peak parking method, using a novel procedure involving switching to a dummy column) were significantly lower in HILIC for all substances compared with those found under RP conditions. Against expectation, c-coefficients were always lower in RP when compared with HILIC using sub-2. μm particles. While measurement of these coefficients is complicated by retention shifts caused by the influence of high pressure and by frictional heating effects, broadly similar results were obtained on larger particle (3.5. μm) phases. The mechanism of the separations was further investigated by examining the effect of buffer concentration on retention. It was concluded that HILIC can sometimes show somewhat inferior performance to RP for fast analysis at high mobile phase velocity, but clearly shows advantages when high column efficiencies, using longer columns at low flow velocity, are employed. The latter result is attributable to the lower viscosity of the mobile phase in HILIC and the reduced pressure requirement as well as the lower b-coefficients. © 2014 David V. McCalley

    Performance of charged aerosol detection with hydrophilic interaction chromatography

    Get PDF
    © 2015 The Authors. The performance of the charged aerosol detector (CAD) was investigated using a diverse set of 29 solutes, including acids, bases and neutrals, over a range of mobile phase compositions, particularly with regard to its suitability for use in hydrophilic interaction chromatography (HILIC). Flow injection analysis was employed as a rapid method to study detector performance. CAD response was 'quasi-universal', strong signals were observed for compounds that have low volatility at typical operating (room) temperature. For relatively involatile solutes, response was reasonably independent of solute chemistry, giving variation of 12-18% RSD from buffered 95% ACN (HILIC) to 10% ACN (RP). Somewhat higher response was obtained for basic compared with neutral solutes. For cationic basic solutes, use of anionic reagents of increasing size in the mobile phase (formic, trifluoroacetic and heptafluorobutyric acid) produced somewhat increased detector response, suggesting that salt formation with these reagents is contributory. However, the increase was not stoichiometric, pointing to a complex mechanism. In general, CAD response increased as the concentration of acetonitrile in the mobile phase was increased from highly aqueous (10% ACN) to values typical in the HILIC range (80-95% ACN), with signal to noise ratios about four times higher than those for the RP range. The response of the CAD is non-linear. Equations describing aerosol formation cannot entirely explain the shape of the plots. Limits of detection (determined with a column for solutes of low k) under HILIC conditions were of the order of 1-3. ng on column, which compares favourably with other universal detectors. CAD response to inorganic anions allows observation of the independent movement through the column of the cationic and anionic constituents of basic drugs, which appear to be accompanied by mobile phase counterions, even at quite high solute concentrations

    Resilience and robustness in long-term planning of the national energy and transportation system

    Get PDF
    The most significant energy consuming infrastructures and the greatest contributors to greenhouse gases for any developed nation today are electric and freight/passenger transportation systems. Technological alternatives for producing, transporting, and converting energy for electric and transportation systems are numerous. Addressing costs, sustainability, and resilience of electric and transportation needs requires long-term assessment since these capital-intensive infrastructures take years to build with lifetimes approaching a century. Yet, the advent of electrically driven transportation, including cars, trucks, and trains, creates potential interdependencies between the two infrastructures that may be both problematic and beneficial. We are developing modeling capability to perform long-term electric and transportation infrastructure design at a national level, accounting for their interdependencies. The approach combines network flow modeling with a multiobjective solution method. We describe and compare it to the state of the art in energy planning models. An example is presented to illustrate important features of this new approach
    • …
    corecore