267 research outputs found

    An Investigation of Longwall Gob Gas Behavior and Control Methods

    Get PDF
    The National Institute for Occupational Safety and Health (NIOSH) has initiated the use of a tracer gas in field studies to characterize geologic and mining factors influencing the migration of longwall gob gas. Three studies have been conducted using sulfur hexafluoride (SF6) at a coal mine in the Northern Appalachian Basin operating in the Pittsburgh Coalbed. Eight underground tracer gas releases and one gob gas venthole release are summarized. The results indicate that the gas flow in the bleeder network and in the interior regions of longwall panel gobs do not strongly interact and that the negative pressure provided by gob gas venthole exhausters is very significant in maintaining this behavior. The data also show that ventilation practices employed in a large multi-panel gob area are functioning in accordance with the intent of the engineering design, a fact which would be difficult to evaluate using conventional mine ventilation measurement methods

    Bioactive growth hormone in humans: Controversies, complexities and concepts

    Get PDF
    Objective: To revisit a finding, first described in 1978, which documented existence of a pituitary growth factor that escaped detection by immunoassay, but which was active in the established rat tibia GH bioassay. Methods: We present a narrative review of the evolution of growth hormone complexity, and its bio-detectability, from a historical perspective. Results: In humans under the age of 60, physical training (i.e. aerobic endurance and resistance training) are stressors which preferentially stimulate release of bioactive GH (bGH) into the blood. Neuroanatomical studies indicate a) that nerve fibers directly innervate the human anterior pituitary and b) that hind limb muscle afferents, in both humans and rats, also modulate plasma bGH. In the pituitary gland itself, molecular variants of GH, somatotroph heterogeneity and cell plasticity all appear to play a role in regulation of this growth factor. Conclusion: This review considers more recent findings on this often forgotten/neglected subject. Comparison testing of a) human plasma samples, b) sub-populations of separated rat pituitary somatotrophs or c) purified human pituitary peptides by GH bioassay vs immunoassay consistently yield conflicting results

    Optodynamic simulation of β-adrenergic receptor signalling

    Get PDF
    Optogenetics has provided a revolutionary approach to dissecting biological phenomena. However, the generation and use of optically active GPCRs in these contexts is limited and it is unclear how well an opsin-chimera GPCR might mimic endogenous receptor activity. Here we show that a chimeric rhodopsin/β(2) adrenergic receptor (opto-β(2)AR) is similar in dynamics to endogenous β(2)AR in terms of: cAMP generation, MAP kinase activation and receptor internalization. In addition, we develop and characterize a novel toolset of optically active, functionally selective GPCRs that can bias intracellular signalling cascades towards either G-protein or arrestin-mediated cAMP and MAP kinase pathways. Finally, we show how photoactivation of opto-β(2)AR in vivo modulates neuronal activity and induces anxiety-like behavioural states in both fiber-tethered and wireless, freely moving animals when expressed in brain regions known to contain β(2)ARs. These new GPCR approaches enhance the utility of optogenetics and allow for discrete spatiotemporal control of GPCR signalling in vitro and in vivo

    Spatiotemporal Control of Opioid Signaling and Behavior

    Get PDF
    SummaryOptogenetics is now a widely accepted tool for spatiotemporal manipulation of neuronal activity. However, a majority of optogenetic approaches use binary on/off control schemes. Here, we extend the optogenetic toolset by developing a neuromodulatory approach using a rationale-based design to generate a Gi-coupled, optically sensitive, mu-opioid-like receptor, which we term opto-MOR. We demonstrate that opto-MOR engages canonical mu-opioid signaling through inhibition of adenylyl cyclase, activation of MAPK and G protein-gated inward rectifying potassium (GIRK) channels and internalizes with kinetics similar to that of the mu-opioid receptor. To assess in vivo utility, we expressed a Cre-dependent viral opto-MOR in RMTg/VTA GABAergic neurons, which led to a real-time place preference. In contrast, expression of opto-MOR in GABAergic neurons of the ventral pallidum hedonic cold spot led to real-time place aversion. This tool has generalizable application for spatiotemporal control of opioid signaling and, furthermore, can be used broadly for mimicking endogenous neuronal inhibition pathways

    Mechanisms of Pacific Summer Water variability in the Arctic's Central Canada Basin

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 7523–7548, doi:10.1002/2014JC010273.Pacific Water flows northward through Bering Strait and penetrates the Arctic Ocean halocline throughout the Canadian Basin sector of the Arctic. In summer, Pacific Summer Water (PSW) is modified by surface buoyancy fluxes and mixing as it crosses the shallow Chukchi Sea before entering the deep ocean. Measurements from Ice-Tethered Profilers, moorings, and hydrographic surveys between 2003 and 2013 reveal spatial and temporal variability in the PSW component of the halocline in the Central Canada Basin with increasing trends in integrated heat and freshwater content, a consequence of PSW layer thickening as well as layer freshening and warming. It is shown here how properties in the Chukchi Sea in summer control the temperature-salinity properties of PSW in the interior by subduction at isopycnals that outcrop in the Chukchi Sea. Results of an ocean model, forced by idealized winds, provide support to the mechanism of surface ocean Ekman transport convergence maintaining PSW ventilation of the halocline.Funding was provided by the National Science Foundation Division of Polar Programs under award 1107623, 1313614, 1107412, 1107277, 1303644, and 0938137 and by Yale University. ICMMG model development was supported by the Russian Fund for Basic Research (14-05-00730A)

    Ghosts in the Garden: locative gameplay and historical interpretation from below

    Get PDF
    © 2017 Steve Poole. Published with licence by Informa UK Limited, trading as Taylor & Francis Group. The heritage industry now makes extensive use of digital audioguides and similar interpretation tools to reach new audiences but many remain rooted in authoritative and didactic conservatism. This paper critically evaluates the state of play in the field, from downloadable audio tours and apps, through more complex engagements with theatrically enhanced and affective simulation, to attempts at fuller dialogic visitor participation and the use of gps or RFID-triggered game mechanics. While ‘armchair’ and home screen-based game and interpretation models are addressed, particular attention is paid to the use of mobile and locative design, where embodiment in place is privileged over less associative or remote experience. The paper takes a research project led by the author as a case study. Ghosts in the Garden was conceived in collaboration with a museum and an experience design SME to test the potential of immersive, affective real world games on public understandings of history. It sought to engage visitors with researched history from below by using a pervasive media soundscape, the ‘ghosts’ of past visitors and a ‘choose-your-own-adventure’ game mechanic in which outcomes are variable, visitor agency is retained and a more radical model of historical knowledge suggested

    Steps to Develop Early Warning Systems and Future Scenarios of Storm Wave-Driven Flooding Along Coral Reef-Lined Coasts

    Get PDF
    ABSTRACT: Tropical coral reef-lined coasts are exposed to storm wave-driven flooding. In the future, flood events during storms are expected to occur more frequently and to be more severe due to sea-level rise, changes in wind and weather patterns, and the deterioration of coral reefs. Hence, disaster managers and coastal planners are in urgent need of decision-support tools. In the short-term, these tools can be applied in Early Warning Systems (EWS) that can help to prepare for and respond to impending storm-driven flood events. In the long-term, future scenarios of flooding events enable coastal communities and managers to plan and implement adequate risk-reduction strategies. Modeling tools that are used in currently available coastal flood EWS and future scenarios have been developed for open-coast sandy shorelines, which have only limited applicability for coral reef-lined shorelines. The tools need to be able to predict local sea levels, offshore waves, as well as their nearshore transformation over the reefs, and translate this information to onshore flood levels. In addition, future scenarios require long-term projections of coral reef growth, reef composition, and shoreline change. To address these challenges, we have formed the UFORiC (Understanding Flooding of Reef-lined Coasts) working group that outlines its perspectives on data and model requirements to develop EWS for storms and scenarios specific to coral reef-lined coastlines. It reviews the state-of-the-art methods that can currently be incorporated in such systems and provides an outlook on future improvements as new data sources and enhanced methods become available

    Vancomycin wrap for anterior cruciate ligament surgery

    Get PDF
    Background: The use of the vancomycin wrap to pretreat the hamstring graft in anterior cruciate ligament reconstruction (ACLR) has grown in popularity since it was first described in 2012 and has significantly reduced rates of postoperative infection. However, it remains unknown if this antibiotic treatment affects the molecular composition of the graft. Purpose: To establish whether treatment with vancomycin at 5 mg/mL, the most commonly used concentration, alters the molecular function of the hamstring graft in ACLR. Study Design: Controlled laboratory study. Methods: Surplus hamstring tendon collected after routine ACLR surgery was used for in vitro cell culture and ex vivo tissue experiments. Vancomycin was used at 5 mg/mL in RPMI or saline diluent to treat cells and tendon tissue, respectively, with diluent control conditions. Cell viability at 30, 60, and 120 minutes was assessed via colorimetric viability assay. Tendon cells treated with control and experimental conditions for 1 hour was evaluated using semiquantitative reverse transcription analysis, immunohistochemistry staining, and protein quantitation via enzyme-linked immunosorbent assay for changes in apoptotic, matrix, and inflammatory gene and protein expression. Results: Vancomycin treatment at 5 mg/mL significantly reduced tenocyte viability in vitro after 60 minutes of treatment (P < .05); however, this was not sustained at 120 minutes. Vancomycin-treated tendon tissue showed no significant increase in apoptotic gene expression, or apoptotic protein levels in tissue or supernatant, ex vivo. Vancomycin was associated with a reduction in inflammatory proteins from treated tendon supernatants (IL-6; P < .05). Conclusion: Vancomycin did not significantly alter the molecular structure of the hamstring graft. Reductions in matrix protein and inflammatory cytokine release point to a potential beneficial effect of vancomycin in generating a homeostatic environment. Clinical Relevance: Vancomycin ACL wrap does not alter the molecular structure of the ACL hamstring graft and may improve graft integrity
    • …
    corecore