125 research outputs found

    A GABAergic projection from the centromedial nuclei of the amygdala to ventromedial prefrontal cortex modulates reward behavior

    Get PDF
    The neural circuitry underlying mammalian reward behaviors involves several distinct nuclei throughout the brain. It is widely accepted that the midbrain dopamine (DA) neurons are critical for the reward-related behaviors. Recent studies have shown that the centromedial nucleus of the amygdala (CeMA) has a distinct role in regulating reward-related behaviors. However, the CeMA and ventromedial PFC (vmPFC) interaction in reward regulation remains poorly understood. Here, we identify and dissect a GABAergic projection that originates in the CeMA and terminates in the vmPFC (VGat-Cre(CeMA-vmPFC)) using viral-vector-mediated, cell-type-specific optogenetic techniques in mice. Pathway-specific optogenetic activation of the VGat-Cre(CeMA-vmPFC) circuit in awake, behaving animals produced a positive, reward-like phenotype in real-time place preference and increased locomotor activity in open-field testing. In sucrose operant conditioning, the photoactivation of these terminals increased nose-poking effort with no effect on licking behavior and robustly facilitated the extinction of operant behavior. However, photoactivation of these terminals did not induce self-stimulation in the absence of an external reward. The results described here suggest that the VGat-Cre(CeMA-vmPFC) projection acts to modulate existing reward-related behaviors. SIGNIFICANCE STATEMENT Many studies have shown that the interactions between the centromedial nucleus of the amygdala (CeMA) and ventromedial PFC (vmPFC) have critical roles for emotional regulation. However, most studies have associated this circuit with fear and anxiety behaviors and emphasized top-down processing from vmPFC to CeMA. Here, we provide new evidence for bottom-up CeMA to vmPFC influence on reward-related behaviors. Although previous work implicated the CeMA in incentive salience, our results isolate the investigation to a specific CeMA GABAergic projection to the vmPFC. This long-range GABAergic interaction between amygdala and frontal cortex adds a new dimension to the complex regulation of reward-related behaviors

    Liquid Chromatography-tandem mass spectrometry-based metabolite profiling in the hearts of germ-free and conventionally-raised mice

    Get PDF
    The microbiota is the community of microorganisms living on and in a biological system. It has shown to play a role in a broad range of medical conditions, including cardiovascular diseases. Germ-free (GF) mice grew under the condition lacking all microorganisms, in contrast to conventionally raised (CONV-R) mice colonized with a diverse microbiota. GF mice play a key role as tools to reveal the the causal relationship between microbiome and disease. In particular, GF mice present significant cardiac functional defects compared to CONV-R mice. The project's goal was to determine the spatial impact of GF vs. CONV-R status on cardiac metabolism across cardiac regions. 4 metabolite molecules showed significant differences by Random Forest analysis based on untargeted liquid chromatography-tandem mass spectrometry data. The four molecules are neighborhood of ADP-ribose (m/z = 588.11), ergothioneine (m/z = 230.1), neighborhood of dodecanoic acid (m/z = 177.13), and L-glutamine (m/z = 130.05). (Neighborhood results were generated from molecular networking.) Parallel reaction monitoring (PRM) was applied to provide more precise quantification results. In most locations, peak abundance significant difference was mapping in the locations: right ventricle free wall and left atrium part between germ-free and CONV-R conditions. Ergothioneine showed a difference in the left ventricle free wall bottom section. The metabolites may relate to the presence of microbiome and contribute to reducing the risk of cardiovascular disease

    Linking teachers' memory-relevant language and the development of children's memory skills.

    Get PDF
    This longitudinal study was designed to (i) examine changes in children’s deliberate memory across the first grade; (ii) characterize the memory-relevant aspects of their classrooms; and (iii) explore linkages between the children’s performance and the language their teachers use in instruction. In order to explore contextual factors that may facilitate the development of skills for remembering, 107 first graders were assessed three times with a broad set of tasks, while extensive observations were made in the 14 classrooms from which these children were sampled. When the participating teachers were classified as high or low in terms of their “mnemonic orientation,” in part on the basis of their use of metacognitive information and requests for deliberate remembering during instruction in language arts and mathematics, differences were observed in the use of mnemonic techniques by the children in their classes. By the end of the year, the children drawn from these two groups of classrooms differed in their spontaneous use of simple behavioral strategies for remembering and in their response to training in more complex verbally-based mnemonic techniques

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Composing The Reflected Best-Self Portrait: Building Pathways For Becoming Extraordinary In Work Organizations

    Full text link
    corecore