41 research outputs found
Population dynamics of the Columbia spotted frog (Rana luteiventris): inference from long-term demography
Worldwide extinctions of amphibians are at the forefront of the biodiversity crisis, with climate change figuring prominently as a potential driver of continued amphibian decline. Changes in both the mean and variability of climate conditions may affect amphibian populations in complex, unpredictable ways. However, few studies have evaluated effects of climate change on individual vital rates and subsequent population dynamics of amphibians. I investigated the population dynamics of a high elevation population of the Columbia spotted frog (Rana luteiventris) in relation to climate variation over a ten-year period.
I documented an increase in survival and breeding probability as severity of winter decreased. Therefore, a warming climate with less severe winters is likely to promote population viability in this montane frog population. More generally, amphibians and other ectotherms inhabiting alpine or boreal habitats at or near their thermal ecological limits may benefit from the milder winters provided by a warming climate as long as suitable habitats remain intact.
I then used Bayesian models to demonstrate that changes in mean snowpack had a greater effect on viability than changes in the variance of snowpack. In general, future decreases in mean snowpack increase population viability, and increases in variability have little effect.
Finally, I examined whether heterogeneity in pond hydroperiod on the landscape had the potential to stabilize recruitment and population dynamics. Overall, ponds with different hydroperiods showed contrasting dynamics among years. Variability in recruitment was lowest in the scenario with the greatest pond heterogeneity, suggesting that the presence of a diversity of hydroperiods on the landscape may reduce variability in amphibian recruitment.
Through my research, I have been able to determine relationships between climate variables and vital rates in the Columbia spotted frog, and then use population models to explore how future changes in climate or habitat could affect the viability of this population. These results add to our understanding of how climate variation may influence Rana luteiventris dynamics in montane environments, but also provide a demographic backdrop for determining which factors might affect other amphibian populations and species in diverse mountain environments
Rotational distributions following van der Waals molecule dissociation: Comparison between experiment and theory for benzene-Ar
Rebecca K. Sampson, Susan M. Bellm, Anthony J. McCaffery, and Warren D. Lawranc
Recognizing and integrating wildlife as Elwha restoration agents
Ecosystem restoration involving large dam removal spans large spatial extents, long time scales, and diverse societal constituencies. Restoration success requires collaboration among partner organizations. Success also can be facilitated by integrating components and processes of the ecosystem itself in restoration planning and practice. We review early and future roles of wildlife in restoration of valleys flooded by Elwha dams, with implications for dam removals on other rivers. Detecting early wildlife responses depended on baseline inventories prior to dam removal, followed by monitoring during and after dam removal. Pre-removal studies revealed patterns of small and mid-sized mammal occupancy, bear movement, amphibian occupancy, and avian distributions and species composition. In the few years since dam removal, wildlife colonization of exposed reservoir beds has been rapid, dominated by early successional and mobile species. Wildlife also perform important restoration functions, and contribute to all nine attributes defining restored ecosystems. This early in Elwha restoration, conspicuous wildlife functions include native seed dispersal to restoration sites, herbivore effects on revegetation, and organic matter dispersal to nutrient-poor sediments. In future decades, diverse wildlife also will help restore terrestrial-aquatic connections by dispersing nutrients from increasing salmon runs to riparian and terrestrial areas. Each of these wildlife roles is influenced by spatial distributions of pre-dam structural legacies and structures placed during active restoration efforts, particularly large woody debris. By placing these structures in locations and configurations that support wildlife functions, restoration planning and practice more effectively integrate wildlife in restoration. Benefits include increasing the rate of restoration progress and directing it along more desirable trajectories. In this way, the collaborative interdisciplinary approach in Elwha restoration can be expanded in future restoration projects to encompass active collaboration with the ecosystem itself
Mitochondrial fission factor (Mff) is required for organization of the mitochondrial sheath in spermatids
Background: Mitochondrial fission counterbalances fusion to maintain organelle morphology, but its role during development remains poorly characterized. Mammalian spermatogenesis is a complex developmental process involving several drastic changes to mitochondrial shape and organization. Mitochondria are generally small and spherical in spermatogonia, elongate during meiosis, and fragment in haploid round spermatids. Near the end of spermatid maturation, small mitochondrial spheres line the axoneme, elongate, and tightly wrap around the midpiece to form the mitochondrial sheath, which is critical for fueling flagellar movements. It remains unclear how these changes in mitochondrial morphology are regulated and how they affect sperm development.
Methods: We used genetic ablation of Mff (mitochondrial fission factor) in mice to investigate the role of mitochondrial fission during mammalian spermatogenesis.
Results: Our analysis indicates that Mff is required for mitochondrial fragmentation in haploid round spermatids and for organizing mitochondria in the midpiece in elongating spermatids. In Mff mutant mice, round spermatids have aberrantly elongated mitochondria that often show central constrictions, suggestive of failed fission events. In elongating spermatids and spermatozoa, mitochondrial sheaths are disjointed, containing swollen mitochondria with large gaps between organelles. These mitochondrial abnormalities in Mff mutant sperm are associated with reduced respiratory chain Complex IV activity, aberrant sperm morphology and motility, and reduced fertility.
Conclusions: Mff is required for organization of the mitochondrial sheath in mouse sperm.
General Significance: Mitochondrial fission plays an important role in regulating mitochondrial organization during a complex developmental process
Yeast Miro GTPase, Gem1p, regulates mitochondrial morphology via a novel pathway
Cell signaling events elicit changes in mitochondrial shape and activity. However, few mitochondrial proteins that interact with signaling pathways have been identified. Candidates include the conserved mitochondrial Rho (Miro) family of proteins, which contain two GTPase domains flanking a pair of calcium-binding EF-hand motifs. We show that Gem1p (yeast Miro; encoded by YAL048C) is a tail-anchored outer mitochondrial membrane protein. Cells lacking Gem1p contain collapsed, globular, or grape-like mitochondria. We demonstrate that Gem1p is not an essential component of characterized pathways that regulate mitochondrial dynamics. Genetic studies indicate both GTPase domains and EF-hand motifs, which are exposed to the cytoplasm, are required for Gem1p function. Although overexpression of a mutant human Miro protein caused increased apoptotic activity in cultured cells (Fransson et al., 2003. J. Biol. Chem. 278:6495–6502), Gem1p is not required for pheromone-induced yeast cell death. Thus, Gem1p defines a novel mitochondrial morphology pathway which may integrate cell signaling events with mitochondrial dynamics
Thermal conditions predict intraspecific variation in senescence rate in frogs and toads
Variation in temperature is known to influence mortality patterns in ectotherms. Even though a few experimental studies on model organisms have reported a positive relationship between temperature and actuarial senescence (i.e., the increase in mortality risk with age), how variation in climate influences the senescence rate across the range of a species is still poorly understood in free-ranging animals. We filled this knowledge gap by investigating the relationships linking senescence rate, adult lifespan, and climatic conditions using long-term capture-recapture data from multiple amphibian populations. We considered two pairs of related anuran species from the Ranidae (Rana luteiventris and Rana temporaria) and Bufonidae (Anaxyrus boreas and Bufo bufo) families, which diverged more than 100 Mya and are broadly distributed in North America and Europe. Senescence rates were positively associated with mean annual temperature in all species. In addition, lifespan was negatively correlated with mean annual temperature in all species except A. boreas. In both R. luteiventris and A. boreas, mean annual precipitation and human environmental footprint both had negligible effects on senescence rates or lifespans. Overall, our findings demonstrate the critical influence of thermal conditions on mortality patterns across anuran species from temperate regions. In the current context of further global temperature increases predicted by Intergovernmental Panel on Climate Change scenarios, a widespread acceleration of aging in amphibians is expected to occur in the decades to come, which might threaten even more seriously the viability of populations and exacerbate global decline.Peer reviewe
Restored Agricultural Wetlands in central Iowa: Habitat Quality and Amphibian Response
Amphibians are declining throughout the United States and worldwide due, partly, to habitat loss. Conservation practices on the landscape restore wetlands to denitrify tile drainage effluent and restore ecosystem services. Understanding how water quality, hydroperiod, predation, and disease affect amphibians in restored wetlands is central to maintaining healthy amphibian populations in the region. We examined the quality of amphibian habitat in restored wetlands relative to reference wetlands by comparing species richness, developmental stress, and adult leopard frog (Lithobates pipiens) survival probabilities to a suite of environmental metrics. Although measured habitat variables differed between restored and reference wetlands, differences appeared to have sub-lethal rather than lethal effects on resident amphibian populations. There were few differences in amphibian species richness and no difference in estimated survival probabilities between wetland types. Restored wetlands had more nitrate and alkaline pH, longer hydroperiods, and were deeper, whereas reference wetlands had more amphibian chytrid fungus zoospores in water samples and resident amphibians exhibited increased developmental stress. Restored and reference wetlands are both important components of the landscape in central Iowa and maintaining a complex of fish-free wetlands with a variety of hydroperiods will likely contribute to the persistence of amphibians in this landscape
Dopaminergic Neuronal Loss, Reduced Neurite Complexity and Autophagic Abnormalities in Transgenic Mice Expressing G2019S Mutant LRRK2
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset, autosomal dominant familial Parkinson's disease (PD) and also contribute to idiopathic PD. LRRK2 mutations represent the most common cause of PD with clinical and neurochemical features that are largely indistinguishable from idiopathic disease. Currently, transgenic mice expressing wild-type or disease-causing mutants of LRRK2 have failed to produce overt neurodegeneration, although abnormalities in nigrostriatal dopaminergic neurotransmission have been observed. Here, we describe the development and characterization of transgenic mice expressing human LRRK2 bearing the familial PD mutations, R1441C and G2019S. Our study demonstrates that expression of G2019S mutant LRRK2 induces the degeneration of nigrostriatal pathway dopaminergic neurons in an age-dependent manner. In addition, we observe autophagic and mitochondrial abnormalities in the brains of aged G2019S LRRK2 mice and markedly reduced neurite complexity of cultured dopaminergic neurons. These new LRRK2 transgenic mice will provide important tools for understanding the mechanism(s) through which familial mutations precipitate neuronal degeneration and PD
31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two
Background
The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd.
Methods
We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background.
Results
First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001).
Conclusions
In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival