22 research outputs found

    Use of an Integrated System Dynamics Model for Analyzing Behaviour of the Social-economic-climatic System in Policy Development

    Get PDF
    Climate change remains one of the most critical issues that humans and the natural world face today. Yet while a strong body of scientific research has identified the risks if mitigation and adaptation measures are not taken, there still remains a policy lag. This leads researchers to pose several questions: is there an identified need by the policy domain for more or different science? Is the science that is conducted made policyrelevant? If not, are there tools to better link science to policy? This report will explain the process of science-policy communication related to the development of an integrated system dynamics model of the social-economic-climatic system at the University of Western Ontario under NSERC strategic grant program funding. It will describe the science-policy interface and outline the main challenge to developing science tools for policy, and will then explain how the UWO research team overcame such challenges. Finally, it explains (a) briefly the proposed model and (b) the process of policy scenarios development. The main objective of the research presented in this report is to bring the model closer to policy makers and emphasize how useful this tool is specifically for the Canadian federal government. The science policy communication process has been established through the set of interviews and workshops. Interviews were used (a) to identify the issues of importance to be incorporated in the model development and (b) to formalize a set of policy scenarios that will provide input for policy making. Workshops were used to communicate science to policy developers and discuss the issues of importance for policy development. The research was fundamentally based on a multi-disciplinary approach that assisted in bridging the research domain to the policy domain. Ultimately, the feedback from the interviews and workshops was embedded in the development of the model and its scenarios, and made it possible to transform policy questions into model scenarios. In other words, by linking science and policy domains, the research team was able to produce a science-based and policy-relevant tool. Limitations to the work mainly reflect the current stage of research and model development. As the strategic research continues on the integrated system dynamics model of the social-economic-climatic system, these limitations are likely to be overcome. The other key limitation is in the selection of the government partners. While the current group of partners has provided valuable insight, further research will aim to expand the group of partners across different departments. This will not only reflect a broader range of interests, but will also more accurately represent a systems view of government. Furthermore, a broader range of disciplinary biases will be consulted, including government policymakers who work more intimately with science and policy research.https://ir.lib.uwo.ca/wrrr/1029/thumbnail.jp

    Disaster Risks Research and Assessment to Promote Risk Reduction and Management

    Get PDF
    Natural hazard events lead to disasters when the events interact with exposed and vulnerable physical and social systems. Despite significant progress in scientific understanding of physical phenomena leading to natural hazards as well as of vulnerability and exposure, disaster losses due to natural events do not show a tendency to decrease. This tendency is associated with many factors including increase in populations and assets at risk as well as in frequency and/or magnitude of natural events, especially those related to hydro-meteorological and climatic hazards. But essentially disaster losses increase because some of the elements of the multidimensional dynamic disaster risk system are not accounted for risk assessments. A comprehensive integrated system analysis and periodic assessment of disaster risks at any scale, from local to global, based on knowledge and data/information accumulated so far, are essential scientific tools that can assist in recognition and reduction of disaster risks. This paper reviews and synthesizes the knowledge of natural hazards, vulnerabilities, and disaster risks and aims to highlight potential contributions of science to disaster risk reduction (DRR) in order to provide policy-makers with the knowledge necessary to assist disaster risk mitigation and disaster risk management (DRM)

    Adapting to climate change: The challenges and opportunities in an uncertain policy environment

    Get PDF
    With climate change, there will be stresses on agricultural production in some regions and opportunities in others. Will there be financial and regulatory support for diversification into other crops and for possibly relocating agriculture production to other areas? Will there be investments in public infrastructure, such as transportation and water supply, to support the new regions where conflicting demands for available water leads to conflict.It is important to recognize that choices made now will have continuing economic and social impacts for a long time

    Does Previous Experience of Floods Stimulate the Adoption of Coping Strategies? Evidence from Cross Sectional Surveys in Nigeria and Tanzania

    No full text
    In sub-Saharan Africa, hydro-meteorological related disasters, such as floods, account for the majority of the total number of natural disasters. Over the past century, floods have affected 38 million people, claimed several lives and caused substantial economic losses in the region. The goal of this paper is to examine how personality disposition, social network, and socio-demographic factors mitigate the complex relationship between stressful life experiences of floods and ocean surges and the adoption of coping strategies among coastal communities in Nigeria and Tanzania. Generalized linear models (GLM) were fitted to cross-sectional survey data on 1003 and 1253 individuals in three contiguous coastal areas in Nigeria and Tanzania, respectively. Marked differences in the type of coping strategies were observed across the two countries. In Tanzania, the zero-order relationships between adoption of coping strategies and age, employment and income disappeared at the multivariate level. Only experience of floods in the past year and social network resources were significant predictors of participants’ adoption of coping strategies, unlike in Nigeria, where a plethora of factors such as experience of ocean surges in the past one year, personality disposition, age, education, experience of flood in the past one year, ethnicity, income, housing quality and employment status were still statistically significant at the multivariate level. Our findings suggest that influence of previous experience on adoption of coping strategies is spatially ubiquitous. Consequently, context-specific policies aimed at encouraging the adoption of flood-related coping strategies in vulnerable locations should be designed based on local needs and orientation

    Global risks: Pool knowledge to stem losses from disasters

    No full text
    Public awareness, rigorous risk research and aligned targets will help policy-makers to increase resilience against natural hazards, say Susan L. Cutter and colleagues
    corecore