2,626 research outputs found

    A Planetary Companion to gamma Cephei A

    Full text link
    We report on the detection of a planetary companion in orbit around the primary star of the binary system Îł\gamma Cephei. High precision radial velocity measurements using 4 independent data sets spanning the time interval 1981--2002 reveal long-lived residual radial velocity variations superimposed on the binary orbit that are coherent in phase and amplitude with a period or 2.48 years (906 days) and a semi-amplitude of 27.5 m s−1^{-1}. We performed a careful analysis of our Ca II H & K S-index measurements, spectral line bisectors, and {\it Hipparcos} photometry. We found no significant variations in these quantities with the 906-d period. We also re-analyzed the Ca II λ\lambda8662 {\AA} measurements of Walker et al. (1992) which showed possible periodic variations with the ``planet'' period when first published. This analysis shows that periodic Ca II equivalent width variations were only present during 1986.5 -- 1992 and absent during 1981--1986.5. Furthermore, a refined period for the Ca II λ\lambda8662 {\AA} variations is 2.14 yrs, significantly less than residual radial velocity period. The most likely explanation of the residual radial velocity variations is a planetary mass companion with MM sin ii = 1.7 MJupiterM_{Jupiter} and an orbital semi-major axis of a2a_2 == 2.13 AU. This supports the planet hypothesis for the residual radial velocity variations for Îł\gamma Cep first suggested by Walker et al. (1992). With an estimated binary orbital period of 57 years Îł\gamma Cep is the shortest period binary system in which an extrasolar planet has been found. This system may provide insights into the relationship between planetary and binary star formation.Comment: 19 pages, 15 figures, accepted in Ap. J. Includes additional data and improved orbital solutio

    Modeling Multi-Wavelength Stellar Astrometry. I. SIM Lite Observations of Interacting Binaries

    Get PDF
    Interacting binaries consist of a secondary star which fills or is very close to filling its Roche lobe, resulting in accretion onto the primary star, which is often, but not always, a compact object. In many cases, the primary star, secondary star, and the accretion disk can all be significant sources of luminosity. SIM Lite will only measure the photocenter of an astrometric target, and thus determining the true astrometric orbits of such systems will be difficult. We have modified the Eclipsing Light Curve code (Orosz & Hauschildt 2000) to allow us to model the flux-weighted reflex motions of interacting binaries, in a code we call REFLUX. This code gives us sufficient flexibility to investigate nearly every configuration of interacting binary. We find that SIM Lite will be able to determine astrometric orbits for all sufficiently bright interacting binaries where the primary or secondary star dominates the luminosity. For systems where there are multiple components that comprise the spectrum in the optical bandpass accessible to SIM Lite, we find it is possible to obtain absolute masses for both components, although multi-wavelength photometry will be required to disentangle the multiple components. In all cases, SIM Lite will at least yield accurate inclinations, and provide valuable information that will allow us to begin to understand the complex evolution of mass-transferring binaries. It is critical that SIM Lite maintains a multi-wavelength capability to allow for the proper deconvolution of the astrometric orbits in multi-component systems.Comment: 12 pages, 6 figures, 6 tables. Accepted for publication in the Astrophysical Journa

    Evidence for a Long-period Planet Orbiting Epsilon Eridani

    Full text link
    High precision radial velocity (RV) measurements spanning the years 1980.8--2000.0 are presented for the nearby (3.22 pc) K2 V star Ï”\epsilon Eri. These data, which represent a combination of six independent data sets taken with four different telescopes, show convincing variations with a period of ≈\approx 7 yrs. A least squares orbital solution using robust estimation yields orbital parameters of period, PP = 6.9 yrs, velocity KK-amplitude == 19 {\ms}, eccentricity ee == 0.6, projected companion mass MM sin ii = 0.86 MJupiterM_{Jupiter}, and semi-major axis a2a_2 == 3.3 AU. Ca II H&K S-index measurements spanning the same time interval show significant variations with periods of 3 and 20 yrs, yet none at the RV period. If magnetic activity were responsible for the RV variations then it produces a significantly different period than is seen in the Ca II data. Given the lack of Ca II variation with the same period as that found in the RV measurements, the long-lived and coherent nature of these variations, and the high eccentricity of the implied orbit, Keplerian motion due to a planetary companion seems to be the most likely explanation for the observed RV variations. The wide angular separation of the planet from the star (approximately 1 arc-second) and the long orbital period make this planet a prime candidate for both direct imaging and space-based astrometric measurements.Comment: To appear in Astrophysical Journal Letters. 9 pages, 2 figure

    HST Fine Guidance Sensor Astrometric Parallaxes for Three Dwarf Novae: SS Aurigae, SS Cygni, and U Geminorum

    Get PDF
    We report astrometric parallaxes for three well known dwarf novae obtained using the Fine Guidance Sensors on the Hubble Space Telescope. We found a parallax for SS Aurigae of Pi = 5.00 +/- 0.64 mas, for SS Cygni we found Pi = 6.02 +/- 0.46 mas, and for U Geminorum we obtained Pi = 10.37 +/- 0.50 mas. These represent the first true trigonometric parallaxes of any dwarf novae. We briefly compare these results with previous distance estimates. This program demonstrates that with a very modest amount of HST observing time, the Fine Guidance Sensors can deliver parallaxes of unrivaled precision.Comment: 15 pages, 2 Table

    Fermions, T-duality and effective actions for D-branes in bosonic backgrounds

    Full text link
    We find the effective action for any D-brane in a general bosonic background of supergravity. The results are explicit in component fields up to second order in the fermions and are obtained in a covariant manner. No interaction terms between fermions and the field f=b+Ff=b+F, characteristic of the bosonic actions, are considered. These are reserved for future work. In order to obtain the actions, we reduce directly from the M2-brane world-volume action to the D2-brane world-volume action. Then, by means of T-duality, we obtain the other Dp-brane actions. The resulting Dp-brane actions can be written in a single compact and elegant expression.Comment: 22 pages, latex, version published by JHEP plus typos corrected in eq.(44) and eq.(47

    Photometry and Spectroscopy of the Optical Companion to the Pulsar PSR J1740-5340 in the Globular Cluster NGC 6397

    Get PDF
    We present photometric and spectroscopic observations of the optical companion to the millisecond radio pulsar PSR J1740-5340 in the globular cluster NGC 6397. An analysis of the photometric variability in the B, V, and I-bands indicates an inclination of the system of 43.9+-2.1 degrees if the optical companion fills its Roche lobe (a semi-detached configuration). The spectroscopic data show a radial velocity variation with a semi-amplitude of K=137.2 +- 2.4 km/sec, and a system velocity gamma=17.6 +- 1.5 km/sec, consistent with cluster membership. We use these results to derive a mass of the optical companion of M1=0.296 +- 0.034 Msol and M2=1.53 +- 0.19 Msol for the pulsar. There is evidence for secular change of the amplitude of the optical light curve of the variable measured over seven years. The change does not have interpretation and its presence complicates reliable determination of the absolute parameters of the binary.Comment: 24 pages, 9 figures, submitted to A

    Performance characteristics of next-generation sequencing for the detection of antimicrobial resistance determinants in Escherichia coli genomes and metagenomes

    Get PDF
    Short-read sequencing can provide detection of multiple genomic determinants of antimicrobial resistance from single bacterial genomes and metagenomic samples. Despite its increasing application in human, animal, and environmental microbiology, including human clinical trials, the performance of short-read Illumina sequencing for antimicrobial resistance gene (ARG) detection, including resistance-conferring single nucleotide polymorphisms (SNPs), has not been systematically characterized. Using paired-end 2 x 150 bp (base pair) Illumina sequencing and an assembly-based method for ARG prediction, we determined sensitivity, positive predictive value (PPV), and sequencing depths required for ARG detection in an Escherichia coli isolate of sequence type (ST) 38 spiked into a synthetic microbial community at varying abundances. Approximately 300,000 reads or 15x genome coverage was sufficient to detect ARGs in E. coli ST38, with comparable sensitivity and PPV to ~100x genome coverage. Using metagenome assembly of mixed microbial communities, ARG detection at E. coli relative abundances of 1% would require assembly of approximately 30 million reads to achieve 15x target coverage. The minimum sequencing depths were validated using public data sets of 948 E. coli genomes and 10 metagenomic rectal swab samples. A read-based approach using k-mer alignment (KMA) for ARG prediction did not substantially improve minimum sequencing depths for ARG detection compared to assembly of the E. coli ST38 genome or the combined metagenomic samples. Analysis of sequencing depths from recent studies assessing ARG content in metagenomic samples demonstrated that sequencing depths had a median estimated detection frequency of 84% (interquartile range: 30%-92%) for a relative abundance of 1%. IMPORTANCE Systematically determining Illumina sequencing performance characteristics for detection of ARGs in metagenomic samples is essential to inform study design and appraisal of human, animal, and environmental metagenomic antimicrobial resistance studies. In this study, we quantified the performance characteristics of ARG detection in E. coli genomes and metagenomes and established a benchmark of ~15x coverage for ARG detection for E. coli in metagenomes. We demonstrate that for low relative abundances, sequencing depths of ~30 million reads or more may be required for adequate sensitivity for many applications
    • 

    corecore