418 research outputs found

    Toward gas-phase controlled mass transfer in micro-porous membrane contactors for recovery and concentration of dissolved methane in the gas phase

    Get PDF
    A micro-porous hollow fibre membrane contactor (HFMC) operated in sweep-gas mode has been studied to enable the recovery of dissolved methane from water in concentrated form. At high sweep-gas flow rates, up to 97% dissolved methane removal efficiency is achievable which is sufficient to achieve carbon neutrality (around 88%). An increase in methane composition of the recovered sweep-gas was achievable through two primary mechanisms: (i) an increase in liquid velocity which improved dissolved methane mass transfer into the gas phase; and (ii) a reduction in gas flow which lowered dilution from the receiving gas phase. It was posited that further refinement of the methane content was provided through counter-diffusion of the nitrogen sweep-gas into the liquid phase. Within the boundary conditions studied, the methane composition of the recovered gas phase exceeded the threshold for use in micro-turbines for electricity production. However, reducing the gas-to-liquid ratio to enhance gas phase methane purity introduced gas-phase controlled mass transfer which constrained removal efficiency. Whilst this reduction in removal efficiency can be compensated for by extending path length (i.e. more than one module in series), it is suggested that the gas-phase controlled conditions encountered were also a product of poor shell-side dispersion rather than an approach toward the limiting theoretical gas-to-liquid ratio. This implies that further optimisation can be ascertained through improved membrane contactor design. Importantly, this study demonstrates that micro-porous hollow fibre membrane contactors provide a compact process for recovery of dissolved methane in sufficient concentration for re-use

    Biogas upgrading by chemical absorption using ammonia rich absorbents derived from wastewater

    Get PDF
    The use of ammonia (NH3) rich wastewaters as an ecological chemical absorption solvent for the selective extraction of carbon dioxide (CO2) during biogas upgrading to ā€˜biomethaneā€™ has been studied. Aqueous ammonia absorbents of up to 10,000 gNH3 māˆ’3 demonstrated CO2 absorption rates higher than recorded in the literature for packed columns using 20,000ā€“80,000 g NH3 māˆ’3 which can be ascribed to the process intensification provided by the hollow fibre membrane contactor used in this study to support absorption. Centrifuge return liquors (2325 g māˆ’3 ionised ammonium, NH4+) and a regenerant (477 gNH4+ māˆ’3) produced from a cationic ion exchanger used to harvest NH4+ from crude wastewater were also tested. Carbon dioxide fluxes measured for both wastewaters compared reasonably with analogue ammonia absorption solvents of equivalent NH3 concentration. Importantly, this demonstrates that ammonia rich wastewaters can facilitate chemically enhanced CO2 separation which eliminates the need for costly exogenic chemicals or complex chemical handling which are critical barriers to implementation of chemical absorption. When testing NH3 analogues, the potential to recover the reaction product ammonium bicarbonate (NH4HCO3) in crystalline form was also illustrated. This is significant as it suggests a new pathway for ammonia separation which avoids biological nitrification and produces ammonia stabilised into a commercially viable fertiliser (NH4HCO3). However, in real ammonia rich wastewaters, sodium bicarbonate and calcium carbonate were preferentially formed over NH4HCO3 although it is proposed that NH4HCO3 can be preferentially formed by manipulating both ion exchange and absorbent chemistry

    Quantifying the loss of methane through secondary gas mass transport (or 'slip') from a micro-porous membrane contactor applied to biogas upgrading

    Get PDF
    Secondary gas transport during the separation of a binary gas with a micro-porous hollow fibre membrane contactor (HMFC) has been studied for biogas upgrading. In this application, the loss or ā€˜slip' of the secondary gas (methane) during separation is a known concern, specifically since methane possesses the intrinsic calorific value. Deionised (DI) water was initially used as the physical solvent. Under these conditions, carbon dioxide (CO2) and methane (CH4) absorption were dependent upon liquid velocity (VL). Whilst the highest CO2 flux was recorded at high VL, selectivity towards CO2 declined due to low residence times and a diminished gas-side partial pressure, and resulted in slip of approximately 5.2% of the inlet methane. Sodium hydroxide was subsequently used as a comparative chemical absorption solvent. Under these conditions, CO2 mass transfer increased by increasing gas velocity (VG) which is attributed to the excess of reactive hydroxide ions present in the solvent, and the fast conversion of dissolved CO2 to carbonate species reinitiating the concentration gradient at the gas-liquid interface. At high gas velocities, CH4 slip was reduced to 0.1% under chemical conditions. Methane slip is therefore dependent upon whether the process is gas phase or liquid phase controlled, since methane mass transport can be adequately described by Henry's law within both physical and chemical solvents. The addition of an electrolyte was found to further retard CH4 absorption via the salting out effect. However, their applicability to physical solvents is limited since electrolytic concentration similarly impinges upon the solvents' capacity for CO2. This study illustrates the significance of secondary gas mass transport, and furthermore demonstrates that gas-phase controlled systems are recommended where greater selectivity is required

    Controlling shell-side crystal nucleation in a gas-liquid membrane contactor for simultaneous ammonium bicarbonate recovery and biogas upgrading

    Get PDF
    A gasā€“liquid hollow fibre membrane contactor (HFMC) process has been introduced for carbon dioxide (CO2) separation from biogas where aqueous ammonia (NH3) is used to chemically enhance CO2 absorption and initiate heterogeneous nucleation of the reaction product ammonium bicarbonate at the membraneā€“solvent interface. Aqueous ammonia absorbents (2ā€“7 M) were initially used in single pass for CO2 separation from a synthetic biogas where nucleation of ammonium bicarbonate crystals was observed at the perimeter of the micropores. Recirculation of the aqueous ammonia absorbent encouraged the growth of ammonium bicarbonate crystals on the shell-side of the membrane that measured several microns in diameter. However, at high aqueous NH3 concentrations (3ā€“7 M), lumen side crystallisation occurred and obstructed gas flow through the lumen of the HFMC. The suggested mechanism for lumen-side crystallisation was absorbent breakthrough into the lumen due to pore wetting which was promoted by low absorbent surface tension at high NH3 concentration. Preferential shell-side nucleation can therefore be promoted by (1) raising surface tension of the absorbent and (2) selection of a membrane with a more regulated pore shape than the PTFE membrane used (d/L 0.065) as both actions can diminish solvent ingress into the pore. This was evidenced using 2 M NH3 absorbent where shell-side crystallisation was evidenced without the onset of lumen side crystallisation. Raising surface tension through the inclusion of salt into the chemical absorbent also promoted greater CO2 flux stability. Importantly, this study demonstrates that chemically enhanced HFMC are an attractive prospect for gasā€“liquid separation applications where reaction product recovery offers further economic value

    Indirect genetic effects clarify how traits can evolve even when fitness does not

    Get PDF
    Acknowledgmenets We thank Cortland Griswold, Loeske Kruuk, Alastair Wilson, Piter Bijma, Lucas Marie-Orleach, Joel McGlothlin, and an anonymous reviewer for comments and discussions that helped to improve this manuscript. The authors declare no conflicts of interest.Peer reviewedPublisher PD

    Frequency-dependent and correlational selection pressures have conflicting consequences for assortative mating in a color-polymorphic lizard, Uta stansburiana

    Get PDF
    Acknowledgments We would like to thank the numerous undergraduate researchers involved with this project for their invaluable assistance in lizard rearing and data collection. We also thank D. Haisten, A. Runemark, Y. Takahashi, and M. Verzijden for insightful comments on the manuscript. This project was funded by National Science Foundation DEBOS-15973 to A.G.M. and B.R.S.Peer reviewedPublisher PD

    Dissolved methane recovery from anaerobic effluents using hollow fibre membrane contactors

    Get PDF
    Hollow fibre membrane contactor (HFMC) systems have been studied for the desorption of dissolved methane from both analogue and real anaerobic effluents to ascertain process boundary conditions for separation. When using analogue effluents to establish baseline conditions, up to 98.9% methane removal was demonstrated. Elevated organic concentrations have been previously shown to promote micropore wetting. Consequently, for anaerobic effluent from an upflow anaerobic sludge blanket reactor, which was characterised by a high organic concentration, a nonporous HFMC was selected. Interestingly, mass transfer data from real effluent exceeded that produced with the analogue effluent and was ostensibly due to methane supersaturation of the anaerobic effluent which increased the concentration gradient yielding enhanced mass transfer. However, at high liquid velocities a palpable decline in removal efficiency was noted for the nonporous HFMC which was ascribed to the low permeability of the nonporous polymer provoking membrane controlled mass transfer. For anaerobic effluent from an anaerobic membrane bioreactor (MBR), a microporous HFMC was used as the permeate comprised only a low organic solute concentration. Mass transfer data compared similarly to that of an analogue which suggests that the low organic concentration in anaerobic MBR permeate does not promote pore wetting in microporous HFMC. Importantly, scale-up modelling of the mass transfer data evidenced that whilst dissolved methane is in dilute form, the revenue generated from the recovered methane is sufficient to offset operational and investment costs of a single stage recovery process, however, the economic return is diminished if discharge is to a closed conduit as this requires a multi-stage array to achieve the required dissolved methane consent of 0.14 mg lāˆ’1.Yorkshire Water; Severn Trent Water; Anglian Water; Northumbrian Water; EPSR

    Does repetitive task training improve functional activity after stroke? A Cochrane systematic review and meta-analysis.

    Get PDF
    Repetitive task training resulted in modest improvement across a range of lower limb outcome measures, but not upper limb outcome measures. Training may be sufficient to have a small impact on activities of daily living. Interventions involving elements of repetition and task training are diverse and difficult to classify: the results presented are specific to trials where both elements are clearly present in the intervention, without major confounding by other potential mechanisms of action

    A scoping study for potential communityā€based carbon offsetting schemes in the Falkland Islands

    Get PDF
    A report to Falklands Conservation. In this report, we consider the potential for a future Falkland Island carbon offsetting scheme. Such a scheme would provide a mechanism by which businesses, organisations and individuals could invest in landā€management and restoration schemes that would deliver greenhouse gas reductions or removals, delivering financial support to farmers and others to adopt sustainable landā€management practices, undertake restoration and increase the extent of ecologically valuable habitats. Overall, we consider that a Falkland Island peatland carbon offsetting scheme would have the potential to deliver significant climate change mitigation, to support habitat conservation, and to generate new sources of income for farmers, other landowners and the Islands as a whole. Any scheme would need to be sustainable and developed in partnership with the camp community and wider Falkland society to ensure that it is appropriate for the culture, economics and environment of the Islands

    Loss of huntingtin function slows synaptic vesicle endocytosis in striatal neurons from the httQ140/Q140 mouse model of Huntington's disease

    Get PDF
    Huntington\u27s disease (HD) is caused by CAG repeat expansion within the HTT gene, with the dysfunction and eventual loss of striatal medium spiny neurons a notable feature. Since medium spiny neurons receive high amounts of synaptic input, we hypothesised that this vulnerability originates from an inability to sustain presynaptic performance during intense neuronal activity. To test this hypothesis, primary cultures of either hippocampal or striatal neurons were prepared from either wild-type mice or a knock-in HD mouse model which contains 140 poly-glutamine repeats in the huntingtin protein (htt(Q140/Q140)). We identified a striatum-specific defect in synaptic vesicle (SV) endocytosis in htt(Q140/Q140) neurons that was only revealed during high frequency stimulation. This dysfunction was also present in neurons that were heterozygous for the mutant HTT allele. Depletion of endogenous huntingtin using hydrophobically-modified siRNA recapitulated this activity-dependent defect in wild-type neurons, whereas depletion of mutant huntingtin did not rescue the effect in htt(Q140/Q140) neurons. Importantly, this SV endocytosis defect was corrected by overexpression of wild-type huntingtin in homozygous htt(Q140/Q140) neurons. Therefore, we have identified an activity-dependent and striatum-specific signature of presynaptic dysfunction in neurons derived from pre-symptomatic HD mice, which is due to loss of wild-type huntingtin function. This presynaptic defect may render this specific neuronal subtype unable to operate efficiently during high frequency activity patterns, potentially resulting in dysfunctional neurotransmission, synapse failure and ultimately degeneration
    • ā€¦
    corecore