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A B S T R A C T

Huntington's disease (HD) is caused by CAG repeat expansion within the HTT gene, with the dysfunction and
eventual loss of striatal medium spiny neurons a notable feature. Since medium spiny neurons receive high
amounts of synaptic input, we hypothesised that this vulnerability originates from an inability to sustain pre-
synaptic performance during intense neuronal activity. To test this hypothesis, primary cultures of either hip-
pocampal or striatal neurons were prepared from either wild-type mice or a knock-in HD mouse model which
contains 140 poly-glutamine repeats in the huntingtin protein (httQ140/Q140). We identified a striatum-specific
defect in synaptic vesicle (SV) endocytosis in httQ140/Q140 neurons that was only revealed during high frequency
stimulation. This dysfunction was also present in neurons that were heterozygous for the mutant HTT allele.
Depletion of endogenous huntingtin using hydrophobically-modified siRNA recapitulated this activity-depen-
dent defect in wild-type neurons, whereas depletion of mutant huntingtin did not rescue the effect in httQ140/Q140

neurons. Importantly, this SV endocytosis defect was corrected by overexpression of wild-type huntingtin in
homozygous httQ140/Q140 neurons. Therefore, we have identified an activity-dependent and striatum-specific
signature of presynaptic dysfunction in neurons derived from pre-symptomatic HD mice, which is due to loss of
wild-type huntingtin function. This presynaptic defect may render this specific neuronal subtype unable to
operate efficiently during high frequency activity patterns, potentially resulting in dysfunctional neuro-
transmission, synapse failure and ultimately degeneration.

1. Introduction

Neurotransmitter release is a tightly controlled event, relying on the
synchronous coupling of activity-dependent calcium influx to synaptic
vesicle (SV) fusion (Sudhof, 2012). This process can be difficult to
sustain however, since SVs are highly limited within a typical small
central nerve terminal (Schikorski and Stevens, 2001; Wilhelm et al.,
2014). To maintain the fidelity of neurotransmission, SVs are recycled
locally within the presynapse, with both SV cargo and membrane re-
formed into fusion-competent SV by endocytosis (Cousin, 2017; Saheki
and De Camilli, 2012). When SV endocytosis is perturbed,

neurotransmission is disrupted (Chen et al., 2003; Koh et al., 2004; Koo
et al., 2015; Shupliakov et al., 1997).

Huntington's Disease (HD) is a monogenic disorder caused by a
variable CAG expansion in exon 1 of the HTT gene, resulting in the
expressed huntingtin protein (htt) containing an extended poly-
glutamine tract. The disease is characterized by chorea followed by
hypokinesis, thought to result from a specific degeneration of medium
spiny neurons (MSNs) in the striatum (Vonsattel et al., 1985). However,
a molecular explanation for the loss of this specific neuronal subtype is
currently undetermined.

An emerging theme in a number of degenerative conditions is the
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premise that early presynaptic dysfunction plays a contributory role
towards later pathological outcomes (Waites and Garner, 2011). In this
regard, striatal MSNs receive a high level of excitatory synaptic input to
maintain them in their “up” state (Milnerwood and Raymond, 2010;
Wolf et al., 2005). This suggests that the polyglutamine expansion in
mutant htt (mhtt) may result in an intrinsic inability of MSNs to sustain
neurotransmitter release during such input, rendering them unable to
maintain the fidelity of neurotransmission with downstream synaptic
partners. Consistent with this, dysfunctional striatal transmission with
its target areas has been observed in electrophysiological studies in
animal models (Barry et al., 2018) and terminal loss (presumably pre-
ceded by dysfunction) has been recorded in human neuropathological
studies (Albin et al., 1992; Reiner et al., 1988).

Wild-type htt is enriched at central nerve terminals (DiFiglia et al.,
1995; Yao et al., 2014), suggesting it performs a role in presynaptic
function that may be disrupted on poly-glutamine expansion in HD. We
tested the hypothesis that poly-glutamine expansion of mhtt results in
the intrinsic dysfunction of specific neuronal subtypes that would only
be revealed by elevated neuronal activity. To achieve this, we examined
how high frequency input impacted on presynaptic function in primary
neuronal cultures derived from the httQ140/Q140 knock-in mouse
(Menalled et al., 2003). We discovered an activity-dependent defect in
SV endocytosis that was specific to striatal neurons. Importantly, this
defect was a consequence of loss of wild-type htt function and was
observed in heterozygous neurons, providing potential disease re-
levance. The activity-dependent nature of this SV endocytosis defect
suggests that the intrinsic dysfunction of striatal HD neurons may result
in an inability to sustain neurotransmission during high frequency
input, resulting in synaptic failure and ultimately their degeneration.

2. Materials and methods

2.1. Materials

Synaptophysin-pHluorin (Syp-pH) was provided by Prof. L. Lagnado
(University of Sussex). The htt expression plasmid (human Htt-Q22-
pcDNA3.1) provided by Cure Huntington's Disease Initiative (CHDI) via
the Coriell Institute for Medical Research (Camden, NJ). HttQ140/Q140

knockin mice were provided by CHDI via The Jackson Laboratory. The
following antibodies were used: mouse anti-α-adaptin (for im-
munoprecipitation, Thermo Scientific MA1–064), mouse anti-Htt
(1:8000 for WB; Merck MAB2166) and mouse anti-β-actin (1:250000
for WB; Sigma-Aldrich A3854). Rabbit anti-Htt (1:250; Abcam 109115),
chicken anti-GFP (1:2000; Abcam 13970) and Alexa-conjugated sec-
ondary antibodies (1:500) were purchased from Life Technologies
(Paisley, UK). Secondary antibodies for WB (IRDye 800CW anti-mouse;
LI-COR 927–32210, 1:10000) and Odyssey blocking buffer (927–4000)
were purchased from LI-COR Biosciences (Cambridge, UK). Neurobasal
media, B-27 supplement, penicillin/streptomycin, Minimal Essential
Medium, Dulbecco's Minimal Essential Medium: Nutrient Mixture F12,
Lipofectamine 2000, phosphate buffered salts, were obtained from Life
Technologies. Papain was from Lorne laboratories (Reading, UK). APV
and CNQX were from Abcam (Cambridge, UK). All other reagents were
obtained from Sigma-Aldrich (Poole, UK).

2.2. Oligonucleotide synthesis, deprotection and purification

Hydrophobic modification of siRNA enables efficient internalization
by primary neurons without requirement for standard transfection
methods (Alterman et al., 2015). HsiRNA against htt (HTT10150) and
NTC hsiRNA were based on a previously identified HTT functional
targeting site (Alterman et al., 2015). The compounds were asym-
metric, composed of a 15-nucleotide long duplex region with a single-
stranded 3′ extension on the guide strand. All bases were modified
using alternating 2′-O-methyl /2′-fluoro modification pattern with ad-
ditional 14 phosphorothioates incorporated (Table 1). The 3′ end of the

passenger strand was conjugated to a hydrophobic teg-Chol (tetra-
ethylene glycol cholesterol).

Oligonucleotides were synthesized on an OligoPilot100 Synthesizer.
Both sense and antisense strands were cleaved and deprotected using
40% aq.methylamine at 65 °C for 15min. The oligonucleotide solutions
were then cooled in a freezer and dried under vacuum in a Speedvac.
The resulting pellets were suspended in water. The final purification of
oligonucleotides was performed on an Agilent Prostar System (Agilent,
Santa Clara, CA) equipped with a Hamilton HxSil C18 column
(150× 21.2). The pure oligonucleotides were collected, desalted by
size-exclusion chromatography using a Sephadex G25 and lyophilized.
The identity of oligonucleotides was established by LC-MS analysis on
an Agilent 6530 accuratemass Q-TOF LC/MS (Agilent technologies,
Santa Clara, CA). The purified strands were duplexed and duplex for-
mation and purity were confirmed by gel electrophoresis.

2.3. Mouse colony maintenance and management

All animal work was performed in accordance with the UK Animal
(Scientific Procedures) Act 1986, under Project and Personal License
authority and was approved by the Animal Welfare and Ethical Review
Body at the University of Edinburgh. Specifically, all animals were
killed by schedule 1 procedures in accordance with UK Home Office
Guidelines. In-house colonies of either wild-type C57Bl/6J mice or
httQ140/Q140 knockin mice (which express a chimeric mouse/human
exon 1 inserted into the murine htt gene containing a 140 CAG ex-
pansion (Menalled et al., 2003)) on a C57Bl/6J background were
maintained as homozygotes. For specific experiments using hetero-
zygotes, these mice were crossed to obtain httQ140/+ offspring. Gene
sequencing to confirm CAG repeat length in httQ140/Q140 mice was
performed by Laragen (Culver City, US).

2.4. Primary neuronal culture

Primary cultures of striatal neurons were prepared, since selective
loss of striatal MSNs is a key feature of HD (Milnerwood and Raymond,
2010). Hippocampal neurons were prepared as a control (Zhang et al.,
2015). Either dissociated primary hippocampal- or striatal-enriched
cultures were generated from both male and female E16–18 mouse
embryos. Dissected tissue was digested in papain (0.3 U / ml) supple-
mented phosphate buffered saline (PBS) at 37 °C for 20min. Papain was
then removed and replaced with Dulbecco's Modified Eagle Medium:
Nutrient Mixture F-12 supplemented with 10% w/v foetal bovine serum
and triturated to obtain a single-cell suspension. The suspension was
centrifuged for 5min at 347g. The supernatant was discarded and the
pellet resuspended in Neurobasal medium supplemented with 2% B-27
supplement, 0.5mM L-glutamine, and 1% v/v penicillin/streptomycin.
Hippocampal and striatal neurons were plated at a density of 4× 104

and 6.5× 104 cells/coverslip respectively. Cells were plated onto a
50 μl laminin spot in the centre of a 25mm coverslip pre-coated with
poly-D-lysine in boric acid (100mM, pH 8.5) within a 6-well plate. After
1 h, wells were flooded in the same Neurobasal media as above, and
media was supplemented after 72 h with 1 μM cytosine β-d-arabino-
furanoside to inhibit glial proliferation. In htt knockdown experiments,
0.5 μM of either hsiRNA or NTC was added to culture media after 7 days
in vitro (DIV). All other transfections were performed after 7 or 8 DIV
using 0.6–1.0 μg of DNA per plasmid and 2 μl of lipofectamine 2000 per
well. Imaging experiments were performed at 13 to 15 DIV.

2.5. Imaging and analysis of pHluorin reporters

SV recycling was visualised using syp-pH. Syp-pH has a pH-sensitive
GFP moiety (pHluorin) fused to an intraluminal loop of the SV protein
synaptophysin (Granseth et al., 2006). The fluorescence of syp-pH is
quenched by the acidic SV interior; however, during SV exocytosis its
fluorescence is unquenched on encountering the neutral pH of the
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extracellular medium. Syp-pH is then re-quenched during endocytosis
and subsequent SV acidification.

Coverslips containing primary cultures were mounted in a Warner
imaging chamber (RC-21BRFS) embedded with parallel platinum wires
(6 mm apart). Cultures were subjected to continuous perfusion in
imaging buffer containing (in mM): 119 NaCl, 2.5 KCl, 2 CaCl2, 2
MgCl2, 25 HEPES, 30 glucose, 0.01 CNQX and 0.05 AP5, pH 7.4.
Imaging was performed on a Zeiss Axio Observer D1 inverted epi-
fluorescence microscope (Zeiss Ltd. Germany) using a x40 1.3 NA oil
immersion objective at room temperature unless otherwise indicated.
Images were acquired at 4 s intervals using a Hamamatsu Orca-ER
camera (Hamamatsu, Japan). Cultures were electrically stimulated with
specific trains of electrical field stimulation (either 300 pulses delivered
at 10 Hz or 400 pulses delivered at 40 Hz; both 100mA, 1ms pulse
width). At the end of the experiment, cultures were perfused with al-
kaline imaging buffer (50mM NH4Cl substituted for 50mM NaCl) to
reveal total pHluorin fluorescence.

Wavelength settings for syp-pHluorin were 480 nm excitation
and > 525 nm emission. Offline processing was performed using Fiji is
just ImageJ (FIJI) software (Schindelin et al., 2012). Regions of interest
(ROIs) of identical size were placed over axonal nerve terminals
(Fig. 1A-D) and the fluorescence intensity was monitored over time
using the Time Series Analyser V2 plugin. The change in activity-de-
pendent pHluorin fluorescence was calculated as ΔF/F0 using Microsoft
Excel. Traces were normalised to the peak during stimulation or to total
pHluorin fluorescence (by normalising to the peak response in the
presence of alkaline buffer). In all cases, n refers to the number of in-
dependent coverslips examined.

2.6. Immunofluorescence

Nerve terminal htt expression was assessed using immuno-
fluorescence. After 13–15 DIV, neurons were washed twice with PBS
(pH 7.4) and fixed for 15min at room temperature in PBS containing
4% paraformaldehyde. Cultures were incubated for 5min with PBS
containing 50mM ammonium chloride, followed by two sequential
5 min PBS washes. Cells were permeabilized by incubation in 0.1%
Triton X-100 in PBS for 10min, followed by three PBS washes, and
blocking for 1 h with 2% BSA in PBS. Primary and secondary antibodies
were each diluted in 1% BSA in PBS and incubated with cells for 1 h at
room temperature and washed with three sequential PBS washes before
and after secondary incubation. Images were acquired on a Zeiss Axio
Observer D1 microscope using 480 nm excitation and > 510 emission
to visualise Alexa-488, and 550 nm excitation and > 575 nm emission
to visualise Alexa-568. Expression levels of htt were determined by
using FIJI software to measure the mean fluorescence intensity of
neuronal cell bodies. The mean fluorescence of a transfected neuron cell
body was normalised to the average of the mean fluorescence of the
neighbouring untransfected neurons within the same field of view.
Experimental n represents data from independent coverslips.

2.7. Immunoprecipitation

Forebrain synaptosomes were prepared from either adult wild-type
or httQ140/Q140 mice by differential centrifugation as previously

described (Anggono et al., 2006). Synaptosomes were lysed in ice-cold
lysis buffer (1% Triton X-100, 150mM NaCl, 25mM Tris pH 7.4, 1 mM
EDTA, 1mM EGTA, 20mg/ml leupeptin, 1 mM phenylmethylsulfonyl
fluoride and protease inhibitor mix) for 15min and then centrifuged for
5min at 20,000 g. Supernatants from this lysate were incubated with
Protein G-coupled Sepharose beads and 5 μg of α-adaptin antibody with
rotation overnight. Beads were washed with lysis buffer twice, with
lysis buffer supplemented with 500mM NaCl once, again with lysis
buffer and finally with 20mM Tris (pH 7.4). Bound proteins were then
eluted in SDS sample buffer (67mM SDS, 2mM EGTA, 9.3% glycerol,
12% β-mercaptoethanol, bromophenol blue, 67mM Tris, pH 7.4),
boiled for 5min at 95 °C and analysed by Western blotting. Experi-
mental n represents data from 6 separate immunoprecipitations.

2.8. Western blotting

Western blotting was used to assess immunoprecipitations and htt
knockdown efficiency. Approximately 150,000 neurons were plated on
individual coverslips, which were lysed at 13–15 DIV directly in SDS
sample buffer. Samples were boiled for 5min at 95 °C and resolved
using SDS-PAGE (4–20% gel, Bio-Rad), and transferred to nitrocellulose
membrane using a Bio-Rad Mini Trans-Blot Cell transfer apparatus. The
membrane was incubated for 1 h in Odyssey blocking buffer before a
1 h incubation rotating at room temperature in blocking buffer con-
taining 0.1% tween-20 and primary antibody. Four 5min washes in
blocking buffer occurred before and after 1 h incubation with secondary
antibody. Protein bands were detected with an Odyssey scanner
(800 nm channel) and quantified using FIJI software. Experimental n
represents data from neuronal lysates derived from independent cov-
erslips.

2.9. Experimental design and statistical analysis

All statistical analysis was performed in Graph Pad Prism 6.0. A one-
way ANOVA with Tukey's post-test was used to compare more than two
groups. A two-tailed student's t-test was performed when two groups
were compared. The sample size (n) was taken to be either the number
of independent experiments or individual coverslips as indicated above.
All data are presented as mean values± standard error of the mean
(SEM).

3. Results

3.1. Establishment of an experimental system to interrogate presynaptic
dysfunction in HD neurons

Dysfunctional synaptic transmission is one of the key events that
precipitate a number of neurodegenerative disorders, sometimes
termed synaptopathies (Brose et al., 2010; Waites and Garner, 2011),
with HD included within this definition (Li et al., 2003; Milnerwood
and Raymond, 2010; Rozas et al., 2010). In this study, we investigated
whether presynaptic function was altered before overt pathological or
motor symptoms of HD occurred, to determine whether this may con-
tribute to disease initiation.

SV recycling was monitored in primary cultures derived from either

Table 1
Modification of hsiRNA.

siRNA ID Accession number Strand Sequence

hsiRNANTC N/A Sense fU#mG#fA.mC.fA.mA.fAm.U.fA.mC.fG.mA.fU#mU#fA-TegChol
Antisense PmU#fA#mA.fU.mC.fG.mU.fA.mU.fU.mU.fG.mU#fC#mA#fA#mU#fC#mA#fU

hsiRNAHTT NM_002111 Sense fC#mA#fG.mU.fA.mA.fA.mG.fA.mG.fA.mU.fU#mA#fA-TegChol
Antisense PmU#fU#mA.fA.mU.fC.mU.fC.mU.fU.mU.fA.mC#fU#mG#fA#mU#fA#mU#fA

Chemical modifications are designated as follows. “.” – Phosphodiester bond, “#” – Phosphorothioate bond, “m” – 2’-O-Methyl, “f” – 2’-Fluoro, “P” – 5’ Phosphate,
“TegChol” –Tetraethylene glycol (teg)-Cholesterol.
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wild-type mice or a preclinical model of HD, the httQ140/Q140 knock-in
mouse. This mouse expresses a chimeric mouse/human exon 1, con-
taining a CAG repeat of approximately 140, inserted into the murine
HTT gene, resulting in a large polyglutamine expansion in the expressed
htt protein (Menalled et al., 2003). Primary cultures of striatal neurons
were examined since a key feature of HD is the selective loss of striatal
MSNs (Milnerwood and Raymond, 2010). Hippocampal neurons were
examined in parallel as a control.

Presynaptic function was monitored using the genetically encoded
reporter syp-pH. Syp-pH reports the pH of its immediate environment
by virtue of a pH-sensitive GFP moiety (pHluorin) fused to an in-
traluminal loop of the SV protein synaptophysin (Granseth et al., 2006).
When syp-pH is present inside SVs, its fluorescence is quenched by the
acidic lumenal pH; however, on translocation to the plasma membrane
its fluorescence is unquenched due to the neutral pH of the extracellular
medium. Neuronal activity results in syp-pH dequenching due to SV
fusion (exocytosis), resulting in an increase in fluorescence (Fig. 1A,B).
After neuronal activity terminates, the syp-pH fluorescence signal is re-
quenched by SV acidification after its retrieval by SV endocytosis
(Fig. 1C). The kinetics of SV endocytosis can be estimated by mon-
itoring the rate of fluorescence decrease post-stimulation (Kavalali and
Jorgensen, 2014), since SV acidification is not rate limiting in this
process (Atluri and Ryan, 2006; Egashira et al., 2015; Granseth et al.,

2006).
To determine whether any observed phenotype in httQ140/Q140

neurons was due to a loss of wild-type htt function or a toxic gain of
mhtt function, we employed hydrophobically-modified siRNA (hsiRNA)
which was designed to deplete both wild-type htt and mhtt (Alterman
et al., 2015). The rationale for this approach was that a phenotype
originating from a toxic gain of mhtt function would be corrected by
depletion of mutant htt in httQ140/Q140 neurons. In contrast, if a loss of
htt function was responsible for any phenotype, depletion of htt in wild-
type cultures should mimic the phenotype of httQ140/Q140 neurons.

We first confirmed the knockdown efficiency of both wild-type htt
and mhtt in their respective cultures. The targeting hsiRNA efficiently
and equally depleted both htt in wild-type neurons and mhtt in httQ140/
Q140 neurons to approximately 20% of untransfected controls
(Fig. 1E,F). In contrast, there was no depletion of either htt or mhtt
compared to transfected neurons in wild-type and httQ140/Q140 hippo-
campal neurons that were treated with a non-targeting control (NTC)
hsiRNA (Fig. 1E,F). Therefore, we established an experimental system
that will 1) identify dysfunction in SV recycling in HD neurons, and 2)
whether any observed dysfunction is a result of a loss of normal htt
function or a toxic gain of mhtt function.

Fig. 1. – Establishment of an experimental platform to
study the effect of htt loss and gain of function in wild-
type and httQ140/Q140 neurons. Primary cultures of
wild-type (WT) hippocampal neurons were trans-
fected with synaptophysin-pHluorin (syp-pH) 7 days
prior to fluorescence imaging. Cultures were chal-
lenged with a train of 300 electrical field stimuli
delivered at 10 Hz followed by a pulse of ammonium
chloride buffer (NH4Cl). (A-D) Representative
images showing the syp-pH response either before
(Rest, A), during (10 Hz, B) or after (Recovery, C) the
stimulus train. The syp-pH signal in response to
NH4Cl challenge is displayed in D. Arrows indicate
typical responsive puncta. Scale bar represents
10 μm. (E) Representative Western blot of htt levels
from neuronal lysates derived from either wild-type
(WT) or httQ140/Q140 (Q140) hippocampal cultures
after 7 days in the presence of 0.5 μM of htt hsiRNA
(KD) or non-targeting control (NTC). Lysates from
untransfected (UnTf) neurons are also displayed. A
representative actin blot from the same membrane is
displayed. (F) Bar graph displays the average extent
of htt or mhtt expression (normalised to actin
loading controls) ± SEM as a proportion of trans-
fected controls. Red points indicate WT NTC, maroon
points WT KD, dark blue points Q140 NTC and light
blue points Q140 KD (WT NTC n=6, WT KD n=8;
Q140 NTC n=3, Q140 KD n=3; one-way ANOVA
to WT NTC, ***= p < .001). (For interpretation of
the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 2. – SV endocytosis is unaffected in httQ140/Q140

neurons at low stimulation frequencies. Primary cul-
tures of either hippocampal (HPC) or striatal (STR)
neurons generated from either wild-type (WT) or
httQ140/Q140 (Q140) mice were transfected with sy-
naptophysin-pHluorin (syp-pH). In addition, cultures
were treated with 0.5 μM of htt hsiRNA (KD) or a
non-targeting control (NTC) for 7 days previously.
Cultures were challenged with a train of 300 elec-
trical field stimuli delivered at 10 Hz followed by a
pulse of ammonium chloride buffer (NH4Cl). (A,C)
Traces display the time course of the average fluor-
escent syp-pH response normalised to the peak of
stimulation (ΔF/F0 ± SEM) in all conditions for ei-
ther HPC (A) or STR (C). Red traces indicate WT
NTC, maroon traces WT KD, dark blue traces Q140
NTC and light blue traces Q140 KD. Bar indicates
period of stimulation. (B,D) Quantification of the
time constant (τ) for the syp-pH fluorescence
decrease± SEM (HPC WT n=5 NTC, n= 6 KD;
HPC Q140, n=5 NTC, n=5 KD: STR WT n=3
NTC, n=4 KD; STR Q140 n=6 NTC, n= 4 KD
independent experiments). One-way ANOVA all not
significant. (For interpretation of the references to
colour in this figure legend, the reader is referred to
the web version of this article.)

Fig. 3. – SV endocytosis is disrupted in striatal httQ140/
Q140 neurons specifically during high neuronal activity.
Primary cultures of either hippocampal (HPC) or
striatal (STR) neurons generated from either wild-
type (WT), httQ140/Q140 (Q140) or httQ140/+ (Het)
mice were transfected with synaptophysin-pHluorin
(syp-pH). In addition cultures were treated with
0.5 μM of htt hsiRNA (KD) or a non-targeting control
(NTC) where indicated for 7 days previously.
Cultures were challenged with a train of 400 elec-
trical field stimuli delivered at 40 Hz followed by a
pulse of ammonium chloride buffer. (A,C) Traces
display the time course of the average fluorescent
syp-pH response normalised to the peak of stimula-
tion (ΔF/F0 ± SEM) in all conditions for either HPC
(A) or STR (C). Red traces indicate WT NTC, maroon
traces WT KD, dark blue traces Q140 NTC, light blue
traces Q140 KD and orange traces Het. Bar indicates
period of stimulation. (B,D) Quantification of the
time constant (τ) for the syp-pH fluorescence
decrease± SEM (HPC WT n=7 NTC, n=5 KD;
HPC Q140, n= 5 NTC, n=6 KD: STR WT n=7
NTC, n=11 KD; STR Q140 n=4 NTC, n=5 KD;
STR Het n=8). One-way ANOVA against WT NTC,
**= p < .01; *= p < .05. (For interpretation of
the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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3.2. SV recycling has no obligatory requirement for htt

We first determined whether SV endocytosis was altered during low
frequency (10 Hz, 30 s) stimulation in either wild-type or httQ140/Q140

neurons that were treated with hsiRNA (either targeting or NTC).
Importantly, delivery of hsiRNA did not impact on presynaptic function
(Supplementary Fig. 1). When wild-type and httQ140/Q140 neurons were
compared, there was no genotype-dependent difference in either the
extent (estimated by the return of the syp-pH signal to baseline,
Fig. 2A,C) or kinetics (estimated by the time constant [Tau, τ] of syp-pH
fluorescence decay, Fig. 2B,D) of SV endocytosis for either hippocampal
or striatal neurons. Furthermore, depletion of either htt from wild-type
neurons or mhtt from httQ140/Q140 neurons had no impact on either the
extent or kinetics of SV endocytosis for both hippocampal and striatal
neurons (Fig. 2). There was no effect of any manipulation on the peak
syp-pH response, indicating no effect on evoked SV fusion events
(Supplementary Fig. 2). These experiments indicate that SV endocytosis
is unaffected during low levels of neuronal activity in httQ140/Q140

neurons derived from different brain regions. Importantly, it also re-
veals that htt is dispensable for SV endocytosis during low frequency
stimulation, since its depletion in wild-type neurons has no impact on
this parameter.

3.3. HttQ140/Q140 knockin neurons display a striatum-specific, activity-
dependent defect in SV endocytosis due to loss of wild-type htt function

Our initial hypothesis was that poly-glutamine expansion of mhtt
would result in the selective dysfunction of specific neuronal subtypes
that are challenged by elevated neuronal activity. This is particularly
pertinent for striatal MSNs, which receive a high frequency of input
(Milnerwood and Raymond, 2010). Therefore, we next assessed the
impact of increasing the stimulation frequency to 40 Hz (400 field sti-
muli) on SV endocytosis. When the evoked syp-pH response was mon-
itored in hippocampal cultures treated with NTC hsiRNA, no genotype-
dependent alterations in either the extent or kinetics of SV endocytosis
was observed (Fig. 3A,B). In contrast, striatal httQ140/Q140 NTC hsiRNA-
treated cultures displayed a slowing in the kinetics of SV endocytosis
after high frequency stimulation when compared to wild-type NTC
hsiRNA-treated controls (Fig. 3C,D). The extent of SV endocytosis was
unaffected in striatal httQ140/Q140 neurons, since the syp-pH response
did return to baseline (Supplementary Fig. 3). This striatum-specific,
activity-dependent defect was also apparent when these experiments
were performed at physiological temperatures (Fig. 4). This is an

important control, since it has been proposed that the activation of
different SV endocytosis modes is temperature-dependent (Chanaday
and Kavalali, 2018; Delvendahl et al., 2016; Watanabe et al., 2014).
Thus, striatal neurons from httQ140/Q140 mice display a selective defect
in the kinetics of SV endocytosis that is only revealed during elevated
neuronal activity.

We next determined whether this activity-dependent, striatum-
specific dysfunction in SV endocytosis was due to either a loss of wild-
type htt function or a toxic gain of mhtt function. When htt was de-
pleted with hsiRNA in either wild-type or httQ140/Q140 hippocampal
neurons, no effect on SV endocytosis was observed after high frequency
stimulation, in agreement with the lack of genotype effect in these
neurons (Fig. 3A,B). However, when htt was depleted in wild-type
striatal neurons, a significant slowing in the kinetics of SV endocytosis
was observed, very similar to that observed in NTC-treated httQ140/Q140

striatal neurons (Fig. 3C,D). When mutant htt was depleted in httQ140/
Q140 striatal neurons, no additional retardation in SV endocytosis ki-
netics was observed compared to either NTC-treated httQ140/Q140

striatal neurons or hsiRNA-treated wild-type striatal neurons (Fig. 3D).
The extent of SV endocytosis was unaffected, as evidenced by the return
to baseline of the syp-pH response (Supplementary Fig. 3). Thus, the
activity-dependent defect in SV endocytosis observed exclusively in
httQ140/Q140 striatal neurons, is due to a loss of wild-type htt function
and not a toxic gain of mhtt function.

To address the possibility that the observed slowing of SV en-
docytosis in either httQ140/Q140 striatal neurons or hsiRNA-treated wild-
type neuronal cultures was due to altered SV exocytosis, we examined
the evoked peak height as a proportion of the total SV pool. The total SV
pool is revealed by dequenching the syp-pH signal with an ammonium
chloride buffer after completion of the experiment (Fig. 1D). To confirm
that the evoked peak height was an accurate measure of SV exocytosis,
we applied the V-type ATPase antagonist bafilomycin A1. This proce-
dure arrests SV acidification after endocytosis, and therefore reveals the
total number of SVs that visit the plasma membrane during a stimulus
train, since endocytosis cannot be detected (Sankaranarayanan and
Ryan, 2001). There was no difference in the peak syp-pH response
between neurons treated with or without bafilomycin A1 during a
40 Hz train of stimuli (bafilomycin A1 minus 39.7 ± 3.4% of total SV
pool n=7; plus 34.9 ± 5.3%, n=3, students t-test p= .47, Fig. 5A).
This indicates that very few SVs are retrieved during this high fre-
quency stimulus train, in agreement with previous work (Kokotos et al.,
2018). When the syp-pH peak heights evoked by 40 Hz stimulation
trains were examined, no change was observed across any experimental

Fig. 4. – SV endocytosis is disrupted in striatal httQ140/
Q140 neurons during high neuronal activity at physiolo-
gical temperatures. Primary cultures of striatal neu-
rons generated from either wild-type (WT) or
httQ140/Q140 (Q140) mice were transfected with sy-
naptophysin-pHluorin (syp-pH). Cultures were chal-
lenged with a train of 400 electrical field stimuli
delivered at 40 Hz. (A) Traces display the time
course of the average fluorescent syp-pH response
normalised to the peak of stimulation (ΔF/
F0 ± SEM). Red traces indicate WT and blue traces
indicate Q140. Bar indicates period of stimulation.
(B) Quantification of the time constant (τ) for the
syp-pH fluorescence decrease± SEM (WT n=3,
Q140 n=5). Students t-test * p= .025. (For inter-
pretation of the references to colour in this figure
legend, the reader is referred to the web version of
this article.)
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condition, genotype or neuronal subtype (Fig. 5B,C). Therefore, the
observed defect in endocytosis in striatal neurons in unlikely to be a
secondary consequence of altered exocytosis.

3.4. Wild-type htt expression corrects the activity-dependent SV endocytosis
defect in striatal httQ140/Q140 neurons

We have discovered that loss of wild-type htt function precipitates a
defect in SV endocytosis that is only revealed during intense neuronal
activity in striatal httQ140/Q140 neurons. This suggests that the in-
troduction of wild-type htt into httQ140/Q140 neurons may rescue pre-
synaptic function. To determine this, we expressed wild-type htt (with a
polyglutamine tract of 22, Q22-htt) in both wild-type and httQ140/Q140

culture systems. The level of Q22-htt expression was approximately 1:1
with endogenous mhtt in httQ140/Q140 cultures (Fig. 6A,B).

We next determined whether expression of wild-type htt could
rescue the activity-dependent defect in SV endocytosis in httQ140/Q140

striatal neurons. The expression of Q22-htt in wild-type striatal neurons
had no effect on the evoked syp-pH response (Fig. 6C,D), indicating that
overexpression of wild-type htt is not deleterious to SV endocytosis.
When Q22-htt was expressed in httQ140/Q140 striatal neurons, a full
restoration of kinetics to wild-type levels was observed (Fig. 6C,D).
Thus, the activity-dependent defect in SV endocytosis in striatal httQ140/
Q140 neurons is fully rescued by expression of Q22-htt, confirming loss
of htt function as a key determinant in the perturbation of presynaptic
performance in this HD system.

3.5. Heterozygous httQ140/+ neurons display striatum-specific, activity-
dependent defects in SV endocytosis

We have revealed a striatum-specific and activity-dependent defect
in SV endocytosis in httQ140/Q140 neurons, which is due to a loss of wild-
type htt function. However, HD patients typically have only one copy of
the mutant htt allele (Tyebji and Hannan, 2017), therefore it is im-
portant for disease relevance to determine whether this defect also
occurs in heterozygous httQ140/+ neurons. To investigate this, we
challenged striatal httQ140/+ neurons with a train of high frequency
stimuli and monitored the syp-pH response. A significant slowing of SV
endocytosis was observed, with the time constant of syp-pH fluores-
cence decay comparable to that of either httQ140/Q140 neurons or wild-
type neurons where htt had been depleted via hsiRNA (Fig. 3C,D).
Therefore, this striatum-specific activity-dependent defect in SV en-
docytosis also occurs in the heterozygous condition, suggesting it may
have clinical relevance.

4. Discussion

We have identified a striatum-specific defect in SV endocytosis that
results from a loss of wild-type htt function in neurons derived from a
pre-symptomatic HD mouse model. This defect was only revealed
during intense neuronal activity, suggesting that loss of wild-type htt
function results in an inability of httQ140/Q140 neurons to sustain their
normal function during these conditions. This defect was also observed
in heterozygous neurons, suggesting it may have disease relevance.
Finally, we were able to rescue SV endocytosis in striatal httQ140/Q140

Fig. 5. – SV exocytosis is unaffected in httQ140/Q140

neurons during high neuronal activity. Primary cultures
of either hippocampal (HPC) or striatal (STR) neu-
rons generated from either wild-type (WT) or
httQ140/Q140 (Q140) mice were transfected with sy-
naptophysin-pHluorin (syp-pH). (A) Q140 STR neu-
rons were challenged with a train of 400 electrical
field stimuli delivered at 40 Hz followed by a pulse of
ammonium chloride (NH4Cl) buffer in either the
presence (black trace) or absence (blue trace) of
1 μM bafilomycin A1 (Baf, which arrests SV acid-
ification after endocytosis). The time course of the
syp-pH response is displayed as a proportion of the
total SV recycling pool (revealed by NH4Cl) ± SEM
(Q140 - Baf n=6, Q140+Baf n=3). Bars indicate
period of stimulation or application of NH4Cl. (B,C)
Cultures were treated with 0.5 μM of htt hsiRNA
(KD) or a non-targeting control (NTC) for 7 days
previously. Cultures were challenged with a train of
400 electrical field stimuli delivered at 40 Hz fol-
lowed by a pulse of NH4Cl buffer. Bar graphs display
the extent of the syp-pH response in either HPC (B)
or STR (C) neurons as a proportion of the total SV
recycling pool (revealed by NH4Cl) ± SEM. Red
points indicate WT NTC neurons, maroon points WT
KD, blue points Q140 NTC and light blue Q140 KD
neurons. There was no significant difference in the
evoked peak height for any stimulation condition or
brain region (HPC WT n=7 NTC, n= 5 KD; HPC
Q140, n=5 NTC, n=6 KD: STR WT n=7 NTC,
n= 11 KD; STR Q140 n=4 NTC, n=5 KD, one-
way ANOVA, all ns). (For interpretation of the re-
ferences to colour in this figure legend, the reader is
referred to the web version of this article.)
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neurons by introducing wild-type htt, confirming that this defect was a
result of loss of wild-type htt function. These results reveal that pre-
synaptic dysfunction occurs before clinical symptoms of HD manifest
themselves and may be part of a cascade of deleterious synaptic events
that culminate in synapse loss and degeneration of striatal neurons.

4.1. Choice of HD mouse model

A major rationale for our study was to identify presynaptic disease
signatures at an age before any pathological, behavioral or motor cor-
relate of HD are known to be apparent. We therefore chose the httQ140/
Q140 knock-in mouse model for this study. This model system expresses
full-length mhtt at endogenous levels, and only begins to display neu-
ropathological abnormalities at 4months and gait anomalies at 1 year
(Hickey et al., 2008; Menalled et al., 2003). Therefore, we are confident
that the activity-dependent defect in SV endocytosis observed in
httQ140/Q140 neurons represents early presynaptic dysfunction that
would precede HD symptoms. This contrasts with a number of other
preclinical HD models, such as the R6/2 mouse, which displays a
considerably accelerated disease progression, making a delineation
between pre-symptomatic and symptomatic disease signatures more
challenging. Such models (which overexpress mhtt exon 1 containing a
large CAG repeat) display behavioral changes considerably earlier than
full-length mhtt knock-in models and die within 4months (Mangiarini
et al., 1996). Moreover, nuclear inclusions appear in these models even
before these symptoms appear (Morton et al., 2000). The loss of func-
tion in httQ140/Q140 neurons is not due to reduced presynaptic expres-
sion of mhtt, since it is detected at equivalent levels to wild-type neu-
rons in these compartments (Valencia et al., 2013). Furthermore, no
significant change in the expression levels of a series of selected pre-
synaptic proteins was detected at 3months (Valencia et al., 2013),

suggesting that global alterations in presynaptic protein expression are
not responsible for the defect in SV endocytosis identified in this study.

4.2. Activity-dependent and striatum-specific defect in SV endocytosis in HD
neurons

We observe a selective vulnerability in SV endocytosis in striatal
httQ140/Q140 neurons only during intense neuronal activity. This is likely
to reflect slowing of clathrin-mediated endocytosis, since the clathrin
inhibitor pitstop-2 almost eliminated the syp-pH downstroke after high
frequency stimulation (Supplementary Fig. 4). It should also be noted
that these cultures are enriched for MSNs, but will contain other neu-
ronal subtypes. A slowing in the kinetics of the syp-pH response could
be due to ineffective SV acidification, rather than retarded SV en-
docytosis (Watanabe et al., 2018). However, the absence of effect at low
stimulation frequencies in striatal neurons and during both stimulation
protocols in hippocampal neurons does not support this possibility. The
molecular locus of this SV endocytosis defect is still unknown, however
htt binds to numerous proteins that have direct roles in endocytosis,
with polyglutamine expansion altering many of these interactions
(Borgonovo et al., 2013; El-Daher et al., 2015; Engqvist-Goldstein et al.,
2001; Li et al., 2008; Sittler et al., 1998). One specific association is
with the clathrin adaptor protein AP-2, which is disrupted on poly-
glutamine expansion, resulting in a loss of function (Borgonovo et al.,
2013). In agreement, we have also demonstrated a reduced interaction
of mhtt with AP-2 in synaptosomes derived from httQ140/Q140 mice
(Supplementary Fig. 5). Interestingly, AP-2 recruitment to the plasma
membrane is disrupted in the striatum of HD mice, but not the cortex,
cerebellum or hippocampus (Borgonovo et al., 2013). Therefore striatal
httQ140/Q140 neurons may operate normally during low frequency input,
however as the demand for SV endocytosis increases during elevated

Fig. 6. – Q22-htt expression rescues the activity-de-
pendent SV endocytosis defect in striatal httQ140/Q140

neurons. (A,B) Primary cultures from the hippo-
campus (HPC) of either wild-type (WT) or HttQ140/
Q140 (Q140) mice were transfected with synapto-
physin-pHluorin (syp-pH) and either empty
pcDNA3.1 vector (Emp) or Q22-htt (Q22 OE) 7 days
before fixation and immunostaining for both GFP
(syp-pH) and htt. (A) Representative images show
the syp-pH transfected neuron (arrow) and expres-
sion of htt. Scale bar indicates 20 μm. (B) Bar graph
shows quantification of the level of htt expression as
a percentage of untransfected neurons in the same
field of view. Red points indicate WT Emp neurons,
green points WT Q22, blue points Q140 Emp and
green Q140 Q22 neurons (WT Emp n=4, WT Q22
n=5, Q140 Emp n=9, Q140 Q22 n=7). Two-
tailed student's t-test *= p= .017 for WT and
***= p < .001 for Q140. (C,D) Primary striatal
(STR) cultures from WT or Q140 mice were trans-
fected with synaptophysin-pHluorin (syp-pH) and
either Q22-htt (Q22) or an empty pcDNA3.1 vector
(Emp). After 7 days cultures were stimulated with a
single train of 400 electrical field stimuli at 40 Hz
frequency. (C) Time course of the syp-pH response is
displayed for either WT or Q140 neurons expressing
either Emp or Q22-htt (ΔF/F0 ± SEM). Bar indicates
period of stimulation. Red traces WT Emp neurons,
green traces WT Q22, blue traces Q140 Emp and
black traces Q140 Q22 neurons (D) Quantification of
the time constant (τ) for the syp-pH fluorescence
decrease (WT Emp n=5, WT Q22 n=6; Q140 Emp
n=9, Q140 Q22 n=8 independent experiments,
*** p < .001 against Q140 empty, one-way
ANOVA). (For interpretation of the references to
colour in this figure legend, the reader is referred to
the web version of this article.)

R.L. McAdam, et al. Neurobiology of Disease 134 (2020) 104637

8



activity, the impact of inefficient AP-2 recruitment via mhtt may be-
come apparent. Alternatively, the inability of httQ140/Q140 striatal
neurons to cope during intense neuronal activity may be a secondary
consequence of an as-yet unidentified presynaptic process that retards
SV endocytosis. In this scenario, most neurons are able to adapt their
presynaptic function to compensate for the absence of this particular
process during intense activity, however an intrinsic defect within
httQ140/Q140 striatal neurons may render them specifically vulnerable.
The identity of such a molecular or process deficit is currently un-
known, however should be revealed through a systematic interrogation
of the role of wild-type htt in presynaptic function.

A recent study revealed that presynaptic dysfunction occurred in an
in vitro cortico-striatal co-culture system using httQ140/+ mice
(Virlogeux et al., 2018). In this system, httQ140/+ cortical neurons
displayed a decrease in the number of nerve terminals releasing glu-
tamate regardless of their co-cultured synaptic partner (httQ140/+ or
wild-type striatal neurons). Unfortunately, is it difficult to relate our
work to this study for a number of reasons. These are; 1) SV recycling
was not monitored in either cortical or striatal neurons; 2) cortical
neurons were stimulated using a prolonged (5min) exposure to in-
hibitory receptor antagonists (rather than brief trains of physiologi-
cally-relevant field stimuli); 3) the frequency of stimulation could not
be modulated (due to the chemical depolarization) and 4) glutamate
release was recorded using the genetically-encoded reporter GluSNFr
(Marvin et al., 2013), the output from which was thresholded to pro-
duce a binary outcome – an active or non-active synapse. When one
considers that the number of nerve terminals was reduced to a similar
extent in cultures containing cortical httQ140/+ neurons, this suggests
that the observed potential dysfunction was simply a result of less
cortical synapses in the co-culture system.

4.3. Activity-dependent SV endocytosis defect in striatal HD neurons is due
to htt loss of function

Individuals with HD are heterozygous for the mhtt allele, indicating
a dominant pattern of inheritance. We observe a conservation of the
activity-dependent SV endocytosis defect in striatal httQ140/+ neurons,
highlighting a potential relevance for disease progression. The loss of
function phenotype we observe suggests that it may result from htt
haploinsufficiency. In support, heterozygous htt knockout mice display
a series of cognitive, motor and pathological alterations that are com-
parable to those observed in knock-in models of HD (Menalled et al.,
2009; Nasir et al., 1995; O'Kusky et al., 1999). Furthermore, conditional
knockout of wild-type htt in adult brain forebrain results in extensive
degeneration of a number of different neuronal subtypes, motor phe-
notypes and early mortality (Dragatsis et al., 2000). Alternatively, mhtt
may still act in a dominant negative manner in heterozygotes to ablate
wild-type htt function. In support, selective silencing of the mhtt allele
was sufficient to restore normal brain-derived neurotrophic factor
transport in HD patient cells (Drouet et al., 2014). Our observation that
expression of wild-type htt fully rescues presynaptic function in httQ140/
Q140 neurons argues against this, however it should be borne in mind
that the expression levels of both wild-type htt and mhtt are approxi-
mately double when compared to the heterozygous condition in HD.

There has been considerable investment over the past decade in the
development of a series of htt-lowering therapies (Caron et al., 2018).
The logic of this approach is that the majority of deleterious effects
observed are associated with a toxic gain of htt function. Our work, and
that of others (Gauthier et al., 2004), reveal that loss of wild-type htt
function also causes neuronal dysfunction and this should be considered
in htt-lowering strategies. It also reveals that there is a relatively tight
therapeutic window, since a reduction in wild-type htt expression from
approximately 100% (in corrected httQ140/Q140 neurons, Fig. 6B) to
50% (in httQ140/+ neurons) results in presynaptic dysfunction.

Typically, slowed SV endocytosis results in a decrease in neuro-
transmission, which is due to a short-term depletion in SV numbers

(Chen et al., 2003; Koh et al., 2004; Koo et al., 2015; Shupliakov et al.,
1997). How might this alteration in SV endocytosis translate into al-
tered striatal output in HD? MSNs have two specific outputs, the direct
(projecting to the substantia nigra pars reticulata) or indirect (pro-
jecting to the external globus pallidus) pathway (Cepeda et al., 2014;
Galvan et al., 2012; Rangel-Barajas and Rebec, 2016). MSNs of the
indirect pathway appear to be particularly vulnerable in HD, which is
proposed to lead to the observed chorea (Albin et al., 1992; Reiner
et al., 1988). In addition, comparative studies of the two pathways
suggest that MSNs of the indirect pathway fire at higher frequencies
when injected with the same current as direct pathway MSNs (Gertler
et al., 2008; Kreitzer and Malenka, 2007). The disproportionate excit-
ability of these GABAergic MSNs may therefore result in decreased
inhibitory drive though the indirect pathway, due to slowed SV en-
docytosis. Recent studies indicate that activation of indirect MSNs re-
sulted in increased responses of direct pathway MSNs in HD mouse
models (Barry et al., 2018), suggesting dysfunctional SV retrieval may
contribute towards this increased communication. Directly addressing
this hypothesis will be challenging, however the advent of new genetic
and optogentic tools to dissect these pathways (Barry et al., 2018;
Galvan et al., 2012) may provide a potential future research avenue.

5. Conclusions

The genetic cause and the progression of HD have been known for
20 years (Tyebji and Hannan, 2017; Zuccato and Cattaneo, 2014).
However, the key molecular events that precipitate the degeneration of
striatal MSNs and movement disorders remain unclear. An emerging
view is that an intrinsic susceptibility of specific subtypes of neurons
may render them progressively vulnerable to repeated insult or stres-
sors, culminating in synapse failure and degeneration in later life. Re-
peated patterns of high frequency input may be such a physiological
insult, rendering neurons that encounter such input at risk of dys-
functional neurotransmitter release and ultimately synaptic failure. The
identification of key activity-dependent disease signatures in striatal
neurons that occur before the manifestation of clinical symptoms is a
promising avenue for future therapeutic intervention, since their early
correction may ameliorate future synaptic loss and degeneration.
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