30 research outputs found

    Stock de carbone dans les gros débris ligneux végétaux : cas des forêts tropicales pluvieuses de la Likouala, République du Congo

    Get PDF
    In order to improve the knowledge of the functioning of tropical rainfall forests in the Congo basin ,a study on the quantification of the stocks of carbon in coarse woody debris was done in Likouala’s area, in Republic of Congo. To achieve this goal,14 squares plots of 50mx50m had installed on the whole study area, including ten plots in primary forest and four in secondary forests. The method used was to make an inventory of woody debris lying on the ground or Log and snags in the different study plots. There sults of this study revealed average stocks of 603.45kg MS.ha -1 in primary forests, 468.64 kg MS.ha-1 in secondaryforestsand392.68 kgMS.ha- 1 in agroforestry, with no significant differences between stocks in primary forests and secondary forests (P = 0.05). In addition this study revealed that carbon stocks varied from one locality to another in all the study area, as well as between the experimental plots (p = 0.005). This study helps to understand that the Chablis played a key role in the production of large woody debris

    First estimates of fine root production in tropical peat swamp and terra firme forests of the central Congo Basin

    Get PDF
    Tropical peatlands are carbon-dense ecosystems because they accumulate partially-decomposed plant material. A substantial fraction of this organic matter may derive from fine root production (FRP). However, few FRP estimates exist for tropical peatlands, with none from the world's largest peatland complex in the central Congo Basin. Here we report on FRP using repeat photographs of roots from in situ transparent tubes (minirhizotrons), measured to 1 m depth over three one-month periods (spanning dry to wet seasons), in a palm-dominated peat swamp forest, a hardwood-dominated peat swamp forest, and a terra firme forest. We find FRP of 2.6 ± 0.3 Mg C ha-1 yr-1, 1.9 ± 0.5 Mg C ha-1 yr-1, and 1.7 ± 0.1 Mg C ha-1 yr-1 in the three ecosystem types respectively (mean ± standard error; no significant ecosystem type differences). These estimates fall within the published FRP range worldwide. Furthermore, our hardwood peat swamp estimate is similar to the only other FRP study in tropical peatlands, also hardwood-dominated, from Micronesia. We also found that FRP decreased with depth and was the highest during the dry season. Overall, we show that minirhizotrons can be used as a low-disturbance method to estimate FRP in tropical forests and peatlands

    Current knowledge on the Cuvette Centrale peatland complex and future research directions

    Get PDF
    CongoPeat Early Careers Researchers Group is a group of early career researchers who work directly or in partnership with the NERC funded CongoPeat project (NERC reference no.: NE/R016860/1; https://congopeat.net), which has provided the authors with full or partial financial and academic support.The Cuvette Centrale is the largest tropical peatland complex in the world, covering approximately 145,000 km2 across the Republic of Congo and the Democratic Republic of Congo. It stores ca. 30.6 Pg C, the equivalent of three years of global carbon dioxide emissions and is now the first trans-national Ramsar site. Despite its size and importance as a global carbon store, relatively little is known about key aspects of its ecology and history, including its formation, the scale of greenhouse gas flows, its biodiversity and its history of human activity. Here, we synthesise available knowledge on the Cuvette Centrale, identifying key areas for further research. Finally, we review the potential of mathematical models to assess future trajectories for the peatlands in terms of the potential impacts of resource extraction or climate change.Publisher PDFPeer reviewe

    Current knowledge on the Cuvette Centrale peatland complex and future research directions

    Get PDF
    The Cuvette Centrale is the largest tropical peatland complex in the world, covering approximately 145,000 km2 across the Republic of Congo and the Democratic Republic of Congo. It stores ca. 30.6 Pg C, the equivalent of three years of global carbon dioxide emissions and is now the first trans-national Ramsar site. Despite its size and importance as a global carbon store, relatively little is known about key aspects of its ecology and history, including its formation, the scale of greenhouse gas flows, its biodiversity and its history of human activity. Here, we synthesise available knowledge on the Cuvette Centrale, identifying key areas for further research. Finally, we review the potential of mathematical models to assess future trajectories for the peatlands in terms of the potential impacts of resource extraction or climate change

    Simulating carbon accumulation and loss in the central Congo peatlands

    Get PDF
    Peatlands of the central Congo Basin have accumulated carbon over millennia. They currently store some 29 billion tonnes of carbon in peat. However, our understanding of the controls on peat carbon accumulation and loss and the vulnerability of this stored carbon to climate change is in its infancy. Here we present a new model of tropical peatland development, DigiBog_Congo, that we use to simulate peat carbon accumulation and loss in a rain-fed interfluvial peatland that began forming ~20,000 calendar years Before Present (cal. yr BP, where ‘present’ is 1950 CE). Overall, the simulated age-depth curve is in good agreement with palaeoenvironmental reconstructions derived from a peat core at the same location as our model simulation. We find two key controls on long-term peat accumulation: water at the peat surface (surface wetness) and the very slow anoxic decay of recalcitrant material. Our main simulation shows that between the Late Glacial and early Holocene there were several multidecadal periods where net peat and carbon gain alternated with net loss. Later, a climatic dry phase beginning ~5200 cal. yr BP caused the peatland to become a long-term carbon source from ~3975 to 900 cal. yr BP. Peat as old as ~7000 cal. yr BP was decomposed before the peatland's surface became wetter again, suggesting that changes in rainfall alone were sufficient to cause a catastrophic loss of peat carbon lasting thousands of years. During this time, 6.4 m of the column of peat was lost, resulting in 57% of the simulated carbon stock being released. Our study provides an approach to understanding the future impact of climate change and potential land-use change on this vulnerable store of carbon

    Allometric equation for Raphia laurentii De Wild, the commonest palm in the central Congo peatlands.

    No full text
    The world's largest tropical peatland lies in the central Congo Basin. Raphia laurentii De Wild, the most abundant palm in these peatlands, forms dominant to mono-dominant stands across approximately 45% of the peatland area. R. laurentii is a trunkless palm with fronds up to 20 m long. Owing to its morphology, there is currently no allometric equation which can be applied to R. laurentii. Therefore it is currently excluded from aboveground biomass (AGB) estimates for the Congo Basin peatlands. Here we develop allometric equations for R. laurentii, by destructively sampling 90 individuals in a peat swamp forest, in the Republic of the Congo. Prior to destructive sampling, stem base diameter, petiole mean diameter, the sum of petiole diameters, total palm height, and number of palm fronds were measured. After destructive sampling, each individual was separated into stem, sheath, petiole, rachis, and leaflet categories, then dried and weighed. We found that palm fronds represented at least 77% of the total AGB in R. laurentii and that the sum of petiole diameters was the best single predictor variable of AGB. The best overall allometric equation, however, combined the sum of petiole diameters (SDp), total palm height (H), and tissue density (TD): AGB = Exp(-2.691 + 1.425 × ln(SDp) + 0.695 × ln(H) + 0.395 × ln(TD)). We applied one of our allometric equations to data from two nearby 1-hectare forest plots, one dominated by R. laurentii, where R. laurentii accounted for 41% of the total forest AGB (with hardwood tree AGB estimated using the Chave et al. 2014 allometric equation), and one dominated by hardwood species, where R. laurentii accounted for 8% of total AGB. Across the entire region we estimate that R. laurentii stores around 2 million tonnes of carbon aboveground. The inclusion of R. laurentii in AGB estimates, will drastically improve overall AGB, and therefore carbon stock estimates for the Congo Basin peatlands

    First estimates of fine root production in tropical peat swamp and terra firme forests of the central Congo Basin

    No full text
    Abstract Tropical peatlands are carbon-dense ecosystems because they accumulate partially-decomposed plant material. A substantial fraction of this organic matter may derive from fine root production (FRP). However, few FRP estimates exist for tropical peatlands, with none from the world’s largest peatland complex in the central Congo Basin. Here we report on FRP using repeat photographs of roots from in situ transparent tubes (minirhizotrons), measured to 1 m depth over three one-month periods (spanning dry to wet seasons), in a palm-dominated peat swamp forest, a hardwood-dominated peat swamp forest, and a terra firme forest. We find FRP of 2.6 ± 0.3 Mg C ha−1 yr−1, 1.9 ± 0.5 Mg C ha−1 yr−1, and 1.7 ± 0.1 Mg C ha−1 yr−1 in the three ecosystem types respectively (mean ± standard error; no significant ecosystem type differences). These estimates fall within the published FRP range worldwide. Furthermore, our hardwood peat swamp estimate is similar to the only other FRP study in tropical peatlands, also hardwood-dominated, from Micronesia. We also found that FRP decreased with depth and was the highest during the dry season. Overall, we show that minirhizotrons can be used as a low-disturbance method to estimate FRP in tropical forests and peatlands

    Current knowledge on the Cuvette Centrale peatland complex and future research directions

    No full text
    The Cuvette Centrale is the largest tropical peatland complex in the world, covering approximately 145,000 km2 across the Republic of Congo and the Democratic Republic of Congo. It stores ca. 30.6 Pg C, the equivalent of three years of global carbon dioxide emissions and is now the first trans-national Ramsar site. Despite its size and importance as a global carbon store, relatively little is known about key aspects of its ecology and history, including its formation, the scale of greenhouse gas flows, its biodiversity and its history of human activity. Here, we synthesise available knowledge on the Cuvette Centrale, identifying key areas for further research. Finally, we review the potential of mathematical models to assess future trajectories for the peatlands in terms of the potential impacts of resource extraction or climate change
    corecore