11 research outputs found

    The effects of heat stress on neuromuscular activity during endurance exercise

    Get PDF
    This study analysed the effect of hot (35 C) and cold (15 C) environments on electromyographic (EMG) signal characteristics, skin and rectal temperatures and heart rate during progressive endurance exercise. Eight healthy subjects performed three successive 15-min rides at 30%, 50% and 70% of their peak sustained power output and then cycled at increasing (15 W/min) work rates to exhaustion in both 35 C and 15 C environments. Skin and rectal temperatures, heart rate and EMG data were measured during the trials. The skin temperatures were higher and the subjects felt more uncomfortable in the hot conditions (Bedford scale) (P<0.01). Rectal temperature was slightly, but not significantly, higher under hot conditions. Heart rate was significantly higher in the hot group (between condition P<0.05). Peak power output (267.4€67.7 W vs. 250.1€61.5 W) and time-toexhaustion (55.7€16.7 min vs. 54.5€17.1 min) (COLD vs. HOT) were not different between conditions. There were no differences in integrated EMG (IEMG) or mean power frequency spectrum between conditions. Rating of perceived exertion increased similarly in both conditions over time. Although the hot conditions increased heart rate and skin temperature, there were no differences in muscle recruitment or maximal performance, which suggests that the thermal stress of 35 C, in combination with exercise, did not impair maximal performance in this study

    An ultrasensitive reverse transcription polymerase chain reaction assay to detect asymptomatic low-density Plasmodium falciparum and Plasmodium vivax infections in small volume blood samples.

    Get PDF
    BackgroundHighly sensitive, scalable diagnostic methods are needed to guide malaria elimination interventions. While traditional microscopy and rapid diagnostic tests (RDTs) are suitable for the diagnosis of symptomatic malaria infection, more sensitive tests are needed to screen for low-density, asymptomatic infections that are targeted by interventions aiming to eliminate the entire reservoir of malaria infection in humans.MethodsA reverse transcription polymerase chain reaction (RT- PCR) was developed for multiplexed detection of the 18S ribosomal RNA gene and ribosomal RNA of Plasmodium falciparum and Plasmodium vivax. Simulated field samples stored for 14 days with sample preservation buffer were used to assess the analytical sensitivity and specificity. Additionally, 1750 field samples from Southeastern Myanmar were tested both by RDT and ultrasensitive RT-PCR.ResultsLimits of detection (LoD) were determined under simulated field conditions. When 0.3 mL blood samples were stored for 14 days at 28 °C and 80% humidity, the LoD was less than 16 parasites/mL for P. falciparum and 19.7 copies/µL for P. vivax (using a plasmid surrogate), about 10,000-fold lower than RDTs. Of the 1739 samples successfully evaluated by both ultrasensitive RT-PCR and RDT, only two were RDT positive while 24 were positive for P. falciparum, 108 were positive for P. vivax, and 127 were positive for either P. vivax and/or P. falciparum using ultrasensitive RT-PCR.ConclusionsThis ultrasensitive RT-PCR method is a robust, field-tested screening method that is vastly more sensitive than RDTs. Further optimization may result in a truly scalable tool suitable for widespread surveillance of low-level asymptomatic P. falciparum and P. vivax parasitaemia

    Running economy of African and Caucasian distance runners.

    No full text
    NatuurwetenskappeFisiologiese WetenskappePlease help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]

    An ultrasensitive reverse transcription polymerase chain reaction assay to detect asymptomatic low-density Plasmodium falciparum and Plasmodium vivax infections in small volume blood samples

    No full text
    © 2015 Adams et al. Background: Highly sensitive, scalable diagnostic methods are needed to guide malaria elimination interventions. While traditional microscopy and rapid diagnostic tests (RDTs) are suitable for the diagnosis of symptomatic malaria infection, more sensitive tests are needed to screen for low-density, asymptomatic infections that are targeted by interventions aiming to eliminate the entire reservoir of malaria infection in humans. Methods: A reverse transcription polymerase chain reaction (RT- PCR) was developed for multiplexed detection of the 18S ribosomal RNA gene and ribosomal RNA of Plasmodium falciparum and Plasmodium vivax. Simulated field samples stored for 14 days with sample preservation buffer were used to assess the analytical sensitivity and specificity. Additionally, 1750 field samples from Southeastern Myanmar were tested both by RDT and ultrasensitive RT-PCR. Results: Limits of detection (LoD) were determined under simulated field conditions. When 0.3 mL blood samples were stored for 14 days at 28°C and 80 % humidity, the LoD was less than 16 parasites/mL for P. falciparum and 19.7 copies/μL for P. vivax (using a plasmid surrogate), about 10,000-fold lower than RDTs. Of the 1739 samples successfully evaluated by both ultrasensitive RT-PCR and RDT, only two were RDT positive while 24 were positive for P. falciparum, 108 were positive for P. vivax, and 127 were positive for either P. vivax and/or P. falciparum using ultrasensitive RT-PCR. Conclusions: This ultrasensitive RT-PCR method is a robust, field-tested screening method that is vastly more sensitive than RDTs. Further optimization may result in a truly scalable tool suitable for widespread surveillance of low-level asymptomatic P. falciparum and P. vivax parasitaemia

    An ultrasensitive reverse transcription polymerase chain reaction assay to detect asymptomatic low-density Plasmodium falciparum and Plasmodium vivax infections in small volume blood samples

    Get PDF
    BACKGROUND: Highly sensitive, scalable diagnostic methods are needed to guide malaria elimination interventions. While traditional microscopy and rapid diagnostic tests (RDTs) are suitable for the diagnosis of symptomatic malaria infection, more sensitive tests are needed to screen for low-density, asymptomatic infections that are targeted by interventions aiming to eliminate the entire reservoir of malaria infection in humans. METHODS: A reverse transcription polymerase chain reaction (RT- PCR) was developed for multiplexed detection of the 18S ribosomal RNA gene and ribosomal RNA of Plasmodium falciparum and Plasmodium vivax. Simulated field samples stored for 14 days with sample preservation buffer were used to assess the analytical sensitivity and specificity. Additionally, 1750 field samples from Southeastern Myanmar were tested both by RDT and ultrasensitive RT-PCR. RESULTS: Limits of detection (LoD) were determined under simulated field conditions. When 0.3 mL blood samples were stored for 14 days at 28 °C and 80 % humidity, the LoD was less than 16 parasites/mL for P. falciparum and 19.7 copies/µL for P. vivax (using a plasmid surrogate), about 10,000-fold lower than RDTs. Of the 1739 samples successfully evaluated by both ultrasensitive RT-PCR and RDT, only two were RDT positive while 24 were positive for P. falciparum, 108 were positive for P. vivax, and 127 were positive for either P. vivax and/or P. falciparum using ultrasensitive RT-PCR. CONCLUSIONS: This ultrasensitive RT-PCR method is a robust, field-tested screening method that is vastly more sensitive than RDTs. Further optimization may result in a truly scalable tool suitable for widespread surveillance of low-level asymptomatic P. falciparum and P. vivax parasitaemia. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12936-015-1038-z) contains supplementary material, which is available to authorized users
    corecore