53 research outputs found
Activity of comet 103P/Hartley 2 at the time of the EPOXI mission fly-by
Comet 103P/Hartley~2 was observed on Nov. 1-6, 2010, coinciding with the
fly-by of the space probe EPOXI. The goal was to connect the large scale
phenomena observed from the ground, with those at small scale observed from the
spacecraft. The comet showed strong activity correlated with the rotation of
its nucleus, also observed by the spacecraft. We report here the
characterization of the solid component produced by this activity, via
observations of the emission in two spectral regions where only grain
scattering of the solar radiation is present. We show that the grains produced
by this activity had a lifetime of the order of 5 hours, compatible with the
spacecraft observations of the large icy chunks. Moreover, the grains produced
by one of the active regions have a very red color. This suggests an organic
component mixed with the ice in the grains.Comment: 11 pages, 7 figures, Icarus in pres
Simulation of Europa's water plume
Plumes on Europa would be extremely interesting science and mission targets, particularly due to the unique opportunity to obtain direct information on the subsurface composition, thereby addressing Europa's potential habitability. The existence of water plume on the Jupiter's moon Europa has been long speculated until the recent discover. HST imaged surpluses of hydrogen Lyman alpha and oxygen emissions above the southern hemisphere in December 2012 that are consistent with two 200 km high plumes of water vapor (Roth et al. 2013). In previous works ballistic cryovolcanism has been considered and modeled as a possible mechanism for the formation of low-albedo features on Europa's surface (Fagents et al. 2000). Our simulation agrees with the model of Fagents et al. (2000) and consists of icy particles that follow ballistic trajectories. The goal of such an analysis is to define the height, the distribution and the extension of the icy particles falling on the moon's surface as well as the thickness of the deposited layer. We expect to observe high albedo regions in contrast with the background albedo of Europa surface since we consider that material falling after a cryovolcanic plume consists of snow. In order to understand if this phenomenon is detectable we convert the particles deposit in a pixel image of albedo data. We consider also the limb view of the plume because, even if this detection requires optimal viewing geometry, it is easier detectable in principle against sky. Furthermore, we are studying the loss rates due to impact electron dissociation and ionization to understand how these reactions decrease the intensity of the phenomenon. We expect to obtain constraints on imaging requirements necessary to detect potential plumes that could be useful for ESA's JUICE mission, and in particular for the JANUS camera (Palumbo et al. 2014)
Basaltic material in the main belt: a tale of two (or more) parent bodies?
The majority of basaltic objects in the main belt are dynamically connected to Vesta, the largest differentiated asteroid known. Others, due to their current orbital parameters, cannot be easily dynamically linked to Vesta. This is particularly true for all the basaltic asteroids located beyond 2.5 au, where lies the 3:1 mean motion resonance with Jupiter. In order to investigate the presence of other V-type asteroids in the middle and outer main belt (MOVs) we started an observational campaign to spectroscopically characterize in the visible range MOV candidates. We observed 18 basaltic candidates from TNG and ESO-NTT between 2015 and 2016. We derived spectral parameters using the same approach adopted in our recent statistical analysis and we compared our data with orbital parameters to look for possible clusters of MOVs in the main belt, symptomatic for a new basaltic family. Our analysis seemed to point out that MOVs show different spectral parameters respect to other basaltic bodies in the main belt, which could account for a diverse mineralogy than Vesta; moreover, some of them belong to the Eos family, suggesting the possibility of another basaltic progenitor. This could have strong repercussions on the temperature gradient present in the early Solar system, and on our current understanding of differentiation processes. <P /
Planning the HRIC (High Resolution Imaging Channel) observations of Mercury surface
The High Resolution Imaging Channel (HRIC) of SIMBIOSYS [1]onboard the BepiColombo mission to Mercury, is the visible imaging camera devoted to the detailed characterization of the Hermean surface. The potential huge amount of data that HRIC can produce must cope with the allocated (and shared) mission resources in terms of power, data volume,and pointing maneuvers. For this reason , well before the mission launch, it is extremely important the definition of an operative plan compatible with both the available resources and the scientific objectives accomplishment
Investigating the composition of Potentially Hazardous Asteroids with the NEO-SURFACE survey
There is a high degree of diversity among the physical properties of the Potentially Hazardous asteroids (PHAs). For these objects, the physical characterization is essential to define a successful mitigation mission, therefore ground-based surveys like NEO-SURFACE could provide a fundamental contribution. Our analysis suggest a prevalence of silicate S-types in the PHA population, which could be due in principle to the high efficiency of the transport mechanisms in the inner main belt, or to an observational bias due to the fact that S-types are brighter. <P /
The SSDC Role in the LICIACube Mission: Data Management and the MATISSE Tool
Light Italian Cubesat for Imaging of Asteroids (LICIACube) is an Italian mission managed by the Italian Space
Agency (ASI) and part of the NASA Double Asteroid Redirection Test (DART) planetary defense mission. Its
main goals are to document the effects of the DART impact on Dimorphos, the secondary member of the (65803)
Didymos binary asteroid system, characterizing the shape of the target body and performing dedicated scientific
investigations on it. Within this framework, the mission Science Operations Center will be managed by the Space
Science Data Center (ASI-SSDC), which will have the responsibility of processing, archiving, and disseminating
the data acquired by the two LICIACube onboard cameras. In order to better accomplish this task, SSDC also plans
to use and modify its scientific webtool Multi-purpose Advanced Tool for Instruments for the solar system
Exploration (MATISSE), making it the primary tool for the LICIACube data analysis, thanks to its advanced
capabilities for searching and visualizing data, particularly useful for the irregular shapes common to several small
bodies
VADER: Probing the Dark Side of Dimorphos with LICIACube LUKE
The ASI cubesat LICIACube has been part of the first planetary defense mission DART, having among its scopes to complement the DRACO images to better constrain the Dimorphos shape. LICIACube had two different cameras, LEIA and LUKE, and to accomplish its goal, it exploited the unique possibility of acquiring images of the Dimorphos hemisphere not seen by DART from a vantage point of view, in both time and space. This work is indeed aimed at constraining the tridimensional shape of Dimorphos, starting from both LUKE images of the nonimpacted hemisphere of Dimorphos and the results obtained by DART looking at the impacted hemisphere. To this aim, we developed a semiautomatic Computer Vision algorithm, named VADER, able to identify objects of interest on the basis of physical characteristics, subsequently used as input to retrieve the shape of the ellipse projected in the LUKE images analyzed. Thanks to this shape, we then extracted information about the Dimorphos ellipsoid by applying a series of quantitative geometric considerations. Although the solution space coming from this analysis includes the triaxial ellipsoid found by using DART images, we cannot discard the possibility that Dimorphos has a more elongated shape, more similar to what is expected from previous theories and observations. The result of our work seems therefore to emphasize the unique value of the LICIACube mission and its images, making even clearer the need of having different points of view to accurately define the shape of an asteroid.This work was supported by the Italian Space Agency (ASI) within the LICIACube project (ASI-INAF agreement AC No. 2019-31-HH.0) and by the DART mission, NASA contract 80MSFC20D0004
The Dimorphos ejecta plume properties revealed by LICIACube
The Double Asteroid Redirection Test (DART) had an impact with Dimorphos (a satellite of the asteroid Didymos) on 26 September 20221. Ground-based observations showed that the Didymos system brightened by a factor of 8.3 after the impact because of ejecta, returning to the pre-impact brightness 23.7 days afterwards2. Hubble Space Telescope observations made from 15 minutes after impact to 18.5 days after, with a spatial resolution of 2.1 kilometres per pixel, showed a complex evolution of the ejecta3, consistent with other asteroid impact events. The momentum enhancement factor, determined using the measured binary period change4, ranges between 2.2 and 4.9, depending on the assumptions about the mass and density of Dimorphos5. Here we report observations from the LUKE and LEIA instruments on the LICIACube cube satellite, which was deployed 15 days in advance of the impact of DART. Data were taken from 71 seconds before the impact until 320 seconds afterwards. The ejecta plume was a cone with an aperture angle of 140 ± 4 degrees. The inner region of the plume was blue, becoming redder with increasing distance from Dimorphos. The ejecta plume exhibited a complex and inhomogeneous structure, characterized by filaments, dust grains and single or clustered boulders. The ejecta velocities ranged from a few tens of metres per second to about 500 metres per second.This work was supported by the Italian Space Agency (ASI) in the LICIACube project (ASI-INAF agreement AC no. 2019-31-HH.0) and by the DART mission, NASA contract 80MSFC20D0004. M.Z. acknowledges Caltech and the Jet Propulsion Laboratory for granting the University of Bologna a licence to an executable version of MONTE Project Edition software. M.Z. is grateful to D. Lubey, M. Smith, D. Mages, C. Hollenberg and S. Bhaskaran of NASA/JPL for the discussions and suggestions regarding the operational navigation of LICIACube. G.P. acknowledges financial support from the Centre national d’études spatiales (CNES, France). A.C.B. acknowledges funding by the NEO-MAPP project (grant agreement 870377, EC H2020-SPACE-2019) and by the Ministerio de Ciencia Innovación (PGC 2018) RTI2018-099464-B-I00. F.F. acknowledges funding from the Swiss National Science Foundation (SNSF) Ambizione (grant no. 193346). J.-Y.L. acknowledges the support from the NASA DART Participating Scientist Program (grant no. 80NSSC21K1131). S.D.R. and M.J. acknowledge support from the Swiss National Science Foundation (project no. 200021_207359)
Ejecta Evolution Following a Planned Impact into an Asteroid: The First Five Weeks
The impact of the DART spacecraft into Dimorphos, moon of the asteroid
Didymos, changed Dimorphos' orbit substantially, largely from the ejection of
material. We present results from twelve Earth-based facilities involved in a
world-wide campaign to monitor the brightness and morphology of the ejecta in
the first 35 days after impact. After an initial brightening of ~1.4
magnitudes, we find consistent dimming rates of 0.11-0.12 magnitudes/day in the
first week, and 0.08-0.09 magnitudes/day over the entire study period. The
system returned to its pre-impact brightness 24.3-25.3 days after impact
through the primary ejecta tail remained. The dimming paused briefly eight days
after impact, near in time to the appearance of the second tail. This was
likely due to a secondary release of material after re-impact of a boulder
released in the initial impact, through movement of the primary ejecta through
the aperture likely played a role.Comment: 16 pages, 5 Figures, accepted in the Astrophysical Journal Letters
(ApJL) on October 16, 202
- …