37 research outputs found

    Virtual biopsy in abdominal pathology: where do we stand?

    Get PDF
    In recent years, researchers have explored new ways to obtain information from pathological tissues, also exploring non-invasive techniques, such as virtual biopsy (VB). VB can be defined as a test that provides promising outcomes compared to traditional biopsy by extracting quantitative information from radiological images not accessible through traditional visual inspection. Data are processed in such a way that they can be correlated with the patient’s phenotypic expression, or with molecular patterns and mutations, creating a bridge between traditional radiology, pathology, genomics, and artificial intelligence (AI). Radiomics is the backbone of VB, since it allows the extraction and selection of features from radiological images, feeding them into AI models in order to derive lesions' pathological characteristics and molecular status. Presently, the output of VB provides only a gross approximation of the findings of tissue biopsy. However, in the future, with the improvement of imaging resolution and processing techniques, VB could partially substitute the classical surgical or percutaneous biopsy, with the advantage of being non-invasive, comprehensive, accounting for lesion heterogeneity, and low cost. In this review, we investigate the concept of VB in abdominal pathology, focusing on its pipeline development and potential benefits

    An innovative radiomics approach to predict response to chemotherapy of liver metastases based on CT images

    Get PDF
    Liver metastases (mts) from colorectal cancer (CRC) can have different responses to chemotherapy in the same patient. The aim of this study is to develop and validate a machine learning algorithm to predict response of individual liver mts. 22 radiomic features (RF) were computed on pretreatment portal CT scans following a manual segmentation of mts. RFs were extracted from 7x7 Region of Interests (ROIs) that moved across the image by step of 2 pixels. Liver mts were classified as non-responder (R-) if their largest diameter increased more than 3 mm after 3 months of treatment and responder (R+), otherwise. Features selection (FS) was performed by a genetic algorithm and classification by a Support Vector Machine (SVM) classifier. Sensitivity, specificity, negative (NPV) and positive (PPV) predictive values were evaluated for all lesions in the training and validation sets, separately. On the training set, we obtained sensitivity of 86%, specificity of 67%, PPV of 89% and NPV of 61%, while, on the validation set, we reached a sensitivity of 73%, specificity of 47%, PPV of 64% and NPV of 57%. Specificity was biased by the low number of R- lesions on the validation set. The promising results obtained in the validation dataset should be extended to a larger cohort of patient to further validate our method.Clinical Relevance— to personalize treatment of patients with metastastic colorectal cancer, based on the likelihood of response to chemotherapy of each liver metastasis

    A Convolutional Neural Network based system for Colorectal cancer segmentation on MRI images

    Get PDF
    The aim of the study is to present a new Convolutional Neural Network (CNN) based system for the automatic segmentation of the colorectal cancer. The algorithm implemented consists of several steps: a pre-processing to normalize and highlights the tumoral area, the classification based on CNNs, and a post-processing aimed at reducing false positive elements. The classification is performed using three CNNs: each of them classifies the same regions of interest acquired from three different MR sequences. The final segmentation mask is obtained by a majority voting. Performances were evaluated using a semi-automatic segmentation revised by an experienced radiologist as reference standard. The system obtained Dice Similarity Coefficient (DSC) of 0.60, Precision (Pr) of 0.76 and Recall (Re) of 0.55 on the testing set. After applying the leave-one-out validation, we obtained a median DSC=0.58, Pr=0.74, Re=0.54. The promising results obtained by this system, if validated on a larger dataset, could strongly improve personalized medicine

    Virtual biopsy in prostate cancer: can machine learning distinguish low and high aggressive tumors on MRI?

    Get PDF
    In the last decades, MRI was proven a useful tool for the diagnosis and characterization of Prostate Cancer (PCa). In the literature, many studies focused on characterizing PCa aggressiveness, but a few have distinguished between low-aggressive (Gleason Grade Group (GG) =3) PCas based on biparametric MRI (bpMRI). In this study, 108 PCas were collected from two different centers and were divided into training, testing, and validation set. From Apparent Diffusion Coefficient (ADC) map and T2-Weighted Image (T2WI), we extracted texture features, both 3D and 2D, and we implemented three different methods of Feature Selection (FS): Minimum Redundance Maximum Relevance (MRMR), Affinity Propagation (AP), and Genetic Algorithm (GA). From the resulting subsets of predictors, we trained Support Vector Machine (SVM), Decision Tree, and Ensemble Learning classifiers on the training set, and we evaluated their prediction ability on the testing set. Then, for each FS method, we chose the best classifier, based on both training and testing performances, and we further assessed their generalization capability on the validation set. Between the three best models, a Decision Tree was trained using only two features extracted from the ADC map and selected by MRMR, achieving, on the validation set, an Area Under the ROC (AUC) equal to 81%, with sensitivity and specificity of 77% and 93%, respectively.Clinical Relevance- Our best model demonstrated to be able to distinguish low-aggressive from high-aggressive PCas with high accuracy. Potentially, this approach could help clinician to noninvasively distinguish between PCas that might need active treatment and those that could potentially benefit from active surveillance, avoiding biopsy-related complications

    MRI-based radiomics to predict response in locally advanced rectal cancer: comparison of manual and automatic segmentation on external validation in a multicentre study

    Get PDF
    BACKGROUND: Pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer (LARC) is achieved in 15–30% of cases. Our aim was to implement and externally validate a magnetic resonance imaging (MRI)-based radiomics pipeline to predict response to treatment and to investigate the impact of manual and automatic segmentations on the radiomics models. METHODS: Ninety-five patients with stage II/III LARC who underwent multiparametric MRI before chemoradiotherapy and surgical treatment were enrolled from three institutions. Patients were classified as responders if tumour regression grade was 1 or 2 and nonresponders otherwise. Sixty-seven patients composed the construction dataset, while 28 the external validation. Tumour volumes were manually and automatically segmented using a U-net algorithm. Three approaches for feature selection were tested and combined with four machine learning classifiers. RESULTS: Using manual segmentation, the best result reached an accuracy of 68% on the validation set, with sensitivity 60%, specificity 77%, negative predictive value (NPV) 63%, and positive predictive value (PPV) 75%. The automatic segmentation achieved an accuracy of 75% on the validation set, with sensitivity 80%, specificity 69%, and both NPV and PPV 75%. Sensitivity and NPV on the validation set were significantly higher (p = 0.047) for the automatic versus manual segmentation. CONCLUSION: Our study showed that radiomics models can pave the way to help clinicians in the prediction of tumour response to chemoradiotherapy of LARC and to personalise per-patient treatment. The results from the external validation dataset are promising for further research into radiomics approaches using both manual and automatic segmentations. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s41747-022-00272-2

    MRI-based radiomics to predict response in locally advanced rectal cancer: comparison of manual and automatic segmentation on external validation in a multicentre study

    Get PDF
    Background: Pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer (LARC) is achieved in 15–30% of cases. Our aim was to implement and externally validate a magnetic resonance imaging (MRI)-based radiomics pipeline to predict response to treatment and to investigate the impact of manual and automatic segmentations on the radiomics models. Methods: Ninety-five patients with stage II/III LARC who underwent multiparametric MRI before chemoradiotherapy and surgical treatment were enrolled from three institutions. Patients were classified as responders if tumour regression grade was 1 or 2 and nonresponders otherwise. Sixty-seven patients composed the construction dataset, while 28 the external validation. Tumour volumes were manually and automatically segmented using a U-net algorithm. Three approaches for feature selection were tested and combined with four machine learning classifiers. Results: Using manual segmentation, the best result reached an accuracy of 68% on the validation set, with sensitivity 60%, specificity 77%, negative predictive value (NPV) 63%, and positive predictive value (PPV) 75%. The automatic segmentation achieved an accuracy of 75% on the validation set, with sensitivity 80%, specificity 69%, and both NPV and PPV 75%. Sensitivity and NPV on the validation set were significantly higher (p = 0.047) for the automatic versus manual segmentation. Conclusion: Our study showed that radiomics models can pave the way to help clinicians in the prediction of tumour response to chemoradiotherapy of LARC and to personalise per-patient treatment. The results from the external validation dataset are promising for further research into radiomics approaches using both manual and automatic segmentations

    Heart Failure With Mid-range or Recovered Ejection Fraction: Differential Determinants of Transition

    Get PDF
    The recent definition of an intermediate clinical phenotype of heart failure (HF) based on an ejection fraction (EF) of between 40% and 49%, namely HF with mid-range EF (HFmrEF), has fuelled investigations into the clinical profile and prognosis of this patient group. HFmrEF shares common clinical features with other HF phenotypes, such as a high prevalence of ischaemic aetiology, as in HF with reduced EF (HFrEF), or hypertension and diabetes, as in HF with preserved EF (HFpEF), and benefits from the cornerstone drugs indicated for HFrEF. Among the HF phenotypes, HFmrEF is characterised by the highest rate of transition to either recovery or worsening of the severe systolic dysfunction profile that is the target of disease-modifying therapies, with opposite prognostic implications. This article focuses on the epidemiology, clinical characteristics and therapeutic approaches for HFmrEF, and discusses the major determinants of transition to HFpEF or HFrEF

    Transport Infrastructure Surveillance and Monitoring by Electromagnetic Sensing: The ISTIMES Project

    Get PDF
    The ISTIMES project, funded by the European Commission in the frame of a joint Call “ICT and Security” of the Seventh Framework Programme, is presented and preliminary research results are discussed. The main objective of the ISTIMES project is to design, assess and promote an Information and Communication Technologies (ICT)-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring of critical transport infrastructures. The integration of electromagnetic technologies with new ICT information and telecommunications systems enables remotely controlled monitoring and surveillance and real time data imaging of the critical transport infrastructures. The project exploits different non-invasive imaging technologies based on electromagnetic sensing (optic fiber sensors, Synthetic Aperture Radar satellite platform based, hyperspectral spectroscopy, Infrared thermography, Ground Penetrating Radar-, low-frequency geophysical techniques, Ground based systems for displacement monitoring). In this paper, we show the preliminary results arising from the GPR and infrared thermographic measurements carried out on the Musmeci bridge in Potenza, located in a highly seismic area of the Apennine chain (Southern Italy) and representing one of the test beds of the project
    corecore