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Abstract—Liver metastases (mts) from colorectal cancer 
(CRC) can have different responses to chemotherapy in the same 
patient. The aim of this study is to develop and validate a 
machine learning algorithm to predict response of individual 
liver mts. 22 radiomic features (RF) were computed on pre-
treatment portal CT scans following a manual segmentation of 
mts.  RFs were extracted from 7x7 Region of Interests (ROIs) 
that moved across the image by step of 2 pixels. Liver mts were 
classified as non-responder (R-) if their largest diameter 
increased more than 3 mm after 3 months of treatment and 
responder (R+), otherwise. Features selection (FS) was 
performed by a genetic algorithm and classification by a Support 
Vector Machine (SVM) classifier. Sensitivity, specificity, 
negative (NPV) and positive (PPV) predictive values were 
evaluated for all lesions in the training and validation sets, 
separately. On the training set, we obtained sensitivity of 86%, 
specificity of 67%, PPV of 89% and NPV of 61%, while, on the 
validation set, we reached a sensitivity of 73%, specificity of 
47%, PPV of 64% and NPV of 57%. Specificity was biased by 
the low number of R- lesions on the validation set. The promising 
results obtained in the validation dataset should be extended to 
a larger cohort of patient to further validate our method. 
 

Clinical Relevance— to personalize treatment of patients with 
metastastic colorectal cancer, based on the likelihood of response 
to chemotherapy of each liver metastasis.  

I. INTRODUCTION 

Colorectal cancers (CRC) are highly heterogeneous and 
frequently harbor mutations that render them refractory to 
common treatments. This heterogeneity can lead to variations 
in individual response, different responses between the 
primary tumor and the metastatic lesions or among different 
metastatic lesions in the same patient [1]. 
Response to treatment is commonly evaluated using the 
Response Evaluation Criteria In Solid Tumours (RECIST), 
which measure changes in the longest axial tumor diameters 
after chemotherapy (nCT) of the largest metastasis (mts), up 
to 2 per organ [2]. However, there are some limitations in the 
RECIST criteria. First, this diameter might not be 
representative of the behavior of all mts, since the RECIST 
only provides a per-patient evaluation. Moreover, RECIST 
assesses tumor response after treatment has been completed, 
while it would be useful to predict the response to treatment 
and to adapt it based on the anticipated treatment response [2].  
Radiomics-based biomarkers have shown success in 
predicting response to nCT for different tumor types [3]–[11], 
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including liver mts. However, most of previous studies 
computed radiomics features from the whole segmented 
tumor, without considering the intrinsic heterogeneity of the 
mts [12]. In the present study, we assessed the usefulness of 
partitioning each liver mts into smaller regions of interest 
(ROI) that will be individually classified by a machine 
learning algorithm as responder or non-responder. Each liver 
mts, will be subsequently classified based on the behavior of 
its 7x7 ROIs.  

II. MATERIALS AND METHODS 

A. Patients and reference standard 
We retrospectively evaluated 95 patients with a newly 
diagnosed stage IV CRC and having at least one measurable 
secondary liver lesion as defined by the RECIST 1.1 Criteria 
(greater diameter ≥ 10 mm). All patients were enrolled in a 
clinical trial at the Candiolo Cancer Institute (FPO-IRCC) 
from 2012 to 2018 and underwent a CT exam with contrast 
injection within 2 weeks from the start of the first line 
treatment. A resident radiologist, with 5 year of experience in 
reading CT exams, manually segmented all liver mts with a 
maximum diameter ≥ 10 mm using an open-source software 
(ITK-snap) on the portal phase of the baseline CT exam. For 
each patient a maximum number of 10 mts were selected 
(excluding confluent/subdiaphragmatic mts, or those 
containing large vessels).  
For each segmented mts, the radiologist measured the longest 
diameter at baseline and after 12 weeks of nCT. Mts were 
accordingly classified as non-responder (R-) if their diameter 
increased more than 3 mm and responder (R+) if their 
diameter decreased more than 3 mm or remained stable (±3 
mm). This cut-off was chosen based on a preliminary study, 
in which we demonstrated that 95% confidence interval on 
the difference between means of diameters of liver mts in CT 
exams measured by two radiologists was 3 mm.  
The study was approved by the local Ethics Committee, in 
accordance with the Helsinki Declaration; signed informed 
consent to use and analyze imaging data was obtained from 
all participants before entering the study. 

B. Dataset construction 
Radiomics features (RF) were extracted from a 7x7 ROI that 
moved across the image by step of 2 pixels. From each ROI 
fully included in the tumor mask, 22 RFs were computed on 
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the CT scan acquired before nCT, including: a) 4 first order 
features (mean, standard deviation, skewness and kurtosis), 
and b) 18 texture features computed from the grey level co-
occurrence matrix (GLCM). GLCM were computed with the 
following parameters: distance=1 pixel, number of bins= 32, 
intensities histogram of each ROI rescaled between the 
minimum and maximum value of each ROI.  
ROIs were classified as R+ or R- based on the classification 
of the lesion to whom they belong. 
Patients were divided into a construction dataset and a 
validation set. A normalization step based on the min-max 
scaling was performed on both datasets using the same 
minimum and maximum value, i.e., those of the construction 
set. Then, the construction set was subsequently divided into 
a training and a test set using the self-organizing maps (SOM) 
[13]. To this scope, 2 different 5x5 SOM were constructed to 
cluster R+ and R- ROIs into similar subgroups. The training 
set was composed of 3000 R+ ROIs and 3000 R- ROIs 
randomly selected from each SOM obtained using R+ and R- 
ROIs separately and according to the following equation (1)                
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where N is the total number of neurons, ni is the number of 
elements of the ith neuron, and ROItot is the total number of 
R+/R- ROIs in the construction set. The test set was composed 
of the remaining ROIs.   

C. Features selection and classification  
To perform feature selection and classifier optimization we 
used a genetic algorithm (GA) [14],[15]. To this scope, we 
codified each GA solution as a binary vector composed of 26 
bits, 22 representing each RF (“0” in a given position 
identified a feature not selected whereas a “1” labeled a 
feature included in the final subset), and 4 bits for the 
optimization of the parameters of a Support Vector Machine 
(SVM) classifier: 2 bits were allocated for the kernel type 
(linear, gaussian, or polynomial of 2nd or 3rd order) and 2 bits 
were used for the choice of the box Constrain of the SVM 
(C=1,10,50 or 100).   
The goodness of each solution explored by the algorithm was 
evaluated by a fitness function that measured the ability of the 
corresponding feature subset fed into the optimized SVM 
classifier able to classify ROI as R+ or R-. To avoid 
overfitting, the SVM was trained using only the ROIs 
belonging to the training set, and subsequently classified all 
ROIs of the construction set, i.e., training and test set. For 
each mts, we evaluated the percentage of ROI classified as R+ 
and we computed the Receiver Operating Characteristic 
(ROC) curve. Then, we selected the cut-off of the ROC curve 
that optimized sensitivity and specificity, i.e., the Youden 
Index, and we classified each mts as R+ if its percentage of 
R+ ROIs was higher than the cut-off point, and R- otherwise. 
Finally, we computed the fitness value of the current solution 
as: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 1 − :;":<:=;>
?
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The algorithm started with an initial population of 40 
randomly generated solutions. Then, the roulette wheel 
selection [16] was applied to select the 50% of solutions to be 
used as parents of the next generation: the probability of each 

solution to be selected was inversely proportional to its fitness 
value. Starting from parents’ solutions, a set of newborns’ 
solutions was generated applying a 4-point crossover operator 
with probability equal to 1, and the mutation operator in 
which bits of the solutions were complemented with a 
probability equal to 0.3. Finally, parents’ and newborns’ 
solutions were pooled together, and 40 solutions were 
randomly extracted and used to restart the algorithms. During 
the GA evolution, the best current solution was stored, that 
was the one with the lowest fitness value in the actual 
population. This loop was iterated until 500 iterations were 
reached or no change of the best current solution occurred for 
100 consecutive iterations.  
To consider the random component of GA, the entire 
algorithm was repeated 5 times starting from the same initial 
population of random solutions. The solution having the 
lowest value of fitness was finally selected.  

D. Statistical analysis 
The best features subset and SVM parameters were used to 
develop the final SVM that was used to evaluate the 
performance on both the construction and the validation set. 
The latter was never seen by the classifier during the training 
phase. For each lesion the percentage of ROI classified as R+ 
was computed and the corresponding ROC curve was 
constructed. Each lesion having a percentage of R+ ROIs 
higher than the value represented by the Youden Index 
derived from the ROC curve of the construction set was 
considered as R+, while those having a percentage lower than 
the selected threshold was considered R-. The same threshold 
was used for both the training and the construction sets. 
Confusion matrices were created and the corresponding 
sensitivity, specificity, positive predictive values (PPV) and 
negative predictive values (NPV) were computed. Results of 
our algorithm were compared to those obtained by a stepwise 
backward regression model that used features extracted from 
the whole tumor rather than from smaller ROIs. A per-patient 

 
Figure 1: ROC curves for both the construction and the validation 
sets computed using the percentage of ROIs classified as R+ for each 
metastasis. 

 



  

analysis was also performed, in which a patient was defined 
either R+ or R- if the majority of his metastasis were classified 
as R+ or R-, respectively. Patients having an even number of 
mts either after classification or in the reference standard were 
discarded from this analysis. Statistics analysis was 
performed with Medcalc ® software. 

III. RESULTS 

A. Patients 
24 patients matched the inclusion criteria. Among them 17% 
(4/24) had all R- lesions, 67% (16/24) had all R+ lesions and 
17% (4/24) showed a mixed response (both R+ and R- 
lesions). A total of 123 lesions were included: 38 R- and 85 
R+. The construction set was composed of 16 patients (2 with 
all R- mts, 2 with mixed response and 12 with all R+ mts) 
trying to balance patients with a few and a large number of 
mts. A total of 84 mts were included in the construction set 
(21 R- and 63 R+).     

B. Per-lesion analysis 
Figure 1 shows the ROC curves computed using the percentage 
of ROIs classified as R+. The best cut-off point to maximize 
sensitivity and specificity computed on the construction set 
was equal to 0.35. Using this cut-off on both the construction 
and the test sets, we obtained the per-lesion results showed in 
TABLE I. Our algorithm reached an accuracy of 80.9% 
(95%CI:70.9-88.7%) in the construction set and 61.5% 

(95%CI:44.6-76.6%) in the validation set. These results were 
higher than those obtained by the logistic regression that used 
features extracted from the whole tumour and that reached 
accuracy of 75.0% (95%CI:64.3-83.8%) in the construction 
set and 56.4% (95%CI:39.6-72.2%) in the validation set. Two 
examples of classification in the test set are shown in Figure 
2.  

C. Per-patient analysis 
One patient from the construction set was discarded from this 
analysis, since he had 2 R- mts that were classified one as R- 
and one as R+. Among the remaining 23 patients, 8 were R- 
and 15 were R+. Per-patient sensitivity was 
80.0%(12/15;95%CI:51.9-95.7%), specificity was 
62.5%(5/8;95%CI:24.5-91.5%), PPV was 
80.0%(12/15;95%CI:61.2-91.0%) and NPV was 
62.5%(5/8;34.6-84.0%). 4/6 patients with only one R+ mts 
were correctly classified. No one had only one R- mts.  

IV. DISCUSSION 

In our study, we demonstrated the feasibility of developing a 
radiomics model able to predict the likelihood of response of 
individual mts in patients with mCRC, using an innovative 
approach. Indeed, usually radiomics features are developed 
from the whole tumor, either 2D slices or 3D volume, without 
considering the heterogeneity within the same tumor. 
Conversely, the presented model extracted quantitative 
features from smaller ROIs inside the tumor and classified 
each mts according to the behavior of these ROIs. Using, this 
approach the accuracy was higher than using a logistic 
regression model developed with features extracted from the 
whole 3D tumor. Moreover, since each ROI is characterized 
by a percentage of ROIs classified as R+, it would be possible 
to adjust the cut-off value of the ROC curve to maximize 
either sensitivity or specificity. From a clinical point of view, 
in this setting, the most important metric is sensitivity, indeed 
the main objective is to avoid treatment in case of R- mts, and 
however we should keep treating R+ lesions. However, even 
if the performance obtained in the validation set could be 
considered good and promising, they could be adjusted by 
choosing a cut-off that optimizes sensitivity.  
The prognostic and predictive values of radiomics features in 
metastatic CRC have previously been exploited [9], [10], 

 
Figure 2: Examples of the classification of one slice of two different 
metastases: one R+ (first row) and 1 R- (second row). The first column 
represents the CT image, the second column shows the classification of 
each ROIs: in green are ROIs classified as R+ and in red ROIs classified 
as R- (only the center of each ROI is represented). The third column 
represents the manual mask used as reference standard. 

 
 
 
 
 
 
 

TABLE I: RESULTS OF THE PER-LESION ANALYSIS ON NOTH THE CONSTRUCTION AND THE TEST SETS. VALUES ARE 
EXPRESSED IN PERCENTAGE (95% CONFIDENCE INTERVALS). 

 
Construction set Test set 

Sensitivity Specificity NPV PPV Sensitivity Specificity NPV PPV 

ROI SVM 85.7 
(74.6-93.3) 

66.7 
(43.0-85.4) 

60.9 
(44.2-75.4) 

88.5          
(80.7-93.4) 

72.7 
(49.8-89.3) 

47.1 
(22.3-72.2) 

57.1 
(36.3-75.7) 

64 
(51.5-74.9) 

Lostistic 
regression 

50.0 
(31.3-68.7) 

88.9 
(77.4-95.8) 

76.2 
(68.8-82.2) 

71.4 
(51.0-82.2) 

50.0 
(29.1-70.9) 

66.7 
(38.4-88.2) 

45.4 
(32.8-58.8) 

70.6 
(51.4-84.5) 

NPV= negative predictive value; PPV= positive predictive value. 



  

[17]–[19]. However, none of previous studies developed and 
validated a machine learning model able to predict the 
response of each mts. Most studies that analyzed single mts 
compared differences between R+ and R- mts on a single 
dataset, while we validated our results on an independent 
dataset. To the best of our knowledge, only Ahn et al. [20], 
demonstrated their findings on a validation cohort of 90 
patients, showing that some texture features were 
independently associated with response to chemotherapy of 
the largest hepatic mts. Conversely, we evaluated the results 
of all mts. Detecting if one or more mts will respond 
differently than others, could help providing a tool toward 
personalized medicine. Indeed, if we will be able to detect 
whether a patient has a mixed response, we could treat the not 
responding mts more specifically, i.e. metastasectomy.  
This study has some limitations. First, the total number of 
lesions in the validation dataset should be improved to better 
generalize our promising preliminary results. Second, our 
method did not reach a high specificity, especially in the 
validation dataset. This could be because the number of R- 
mts was 1/3 the number of R+ mts, meaning that the classifier 
had much more information about R+ mts than about R- mts.  
In conclusion, we developed an innovative method to predict 
response to chemotherapy of liver mts. However, the 
promising results obtained in the validation dataset of this 
study should be extended to a larger cohort of patient to 
further validate our method. 
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