156 research outputs found

    Basics and frontiers on pancreatic cancer for radiation oncology: Target delineation, SBRT, SIB technique, MRgRT, particle therapy, immunotherapy and clinical guidelines

    Get PDF
    Pancreatic cancer represents a modern oncological urgency. Its management is aimed to both distal and local disease control. Resectability is the cornerstone of treatment aim. It influences the clinical presentation\u2019s definitions as up-front resectable, borderline resectable and locally advanced (unresectable). The main treatment categories are neoadjuvant (preoperative), definitive and adjuvant (postoperative). This review will focus on i) the current indications by the available national and international guidelines; ii) the current standard indications for target volume delineation in radiotherapy (RT); iii) the emerging modern technologies (including particle therapy and Magnetic Resonance [MR]-guided-RT); iv) stereotactic body radiotherapy (SBRT), as the most promising technical delivery application of RT in this framework; v) a particularly promising dose delivery technique called simultaneous integrated boost (SIB); and vi) a multimodal integration opportunity: the combination of RT with immunotherapy

    Basics and frontiers on pancreatic cancer for radiation oncology: Target delineation, SBRT, SIB technique, MRgRT, particle therapy, immunotherapy and clinical guidelines

    Get PDF
    Pancreatic cancer represents a modern oncological urgency. Its management is aimed to both distal and local disease control. Resectability is the cornerstone of treatment aim. It influences the clinical presentation’s definitions as up-front resectable, borderline resectable and locally advanced (unresectable). The main treatment categories are neoadjuvant (preoperative), definitive and adjuvant (postoperative). This review will focus on i) the current indications by the available national and international guidelines; ii) the current standard indications for target volume delineation in radiotherapy (RT); iii) the emerging modern technologies (including particle therapy and Magnetic Resonance [MR]-guided-RT); iv) stereotactic body radiotherapy (SBRT), as the most promising technical delivery application of RT in this framework; v) a particularly promising dose delivery technique called simultaneous integrated boost (SIB); and vi) a multimodal integration opportunity: the combination of RT with immunotherapy

    Temporal Trend of Age at Diagnosis in Hypertrophic Cardiomyopathy: An Analysis of the International Sarcomeric Human Cardiomyopathy Registry

    Get PDF
    BACKGROUND: Over the last 50 years, the epidemiology of hypertrophic cardiomyopathy (HCM) has changed because of increased awareness and availability of advanced diagnostic tools. We aim to describe the temporal trends in age, sex, and clinical characteristics at HCM diagnosis over >4 decades. METHODS: We retrospectively analyzed records from the ongoing multinational Sarcomeric Human Cardiomyopathy Registry. Overall, 7286 patients with HCM diagnosed at an age 6518 years between 1961 and 2019 were included in the analysis and divided into 3 eras of diagnosis (<2000, 2000-2010, >2010). RESULTS: Age at diagnosis increased markedly over time (40\ub114 versus 47\ub115 versus 51\ub116 years, P<0.001), both in US and non-US sites, with a stable male-to-female ratio of about 3:2. Frequency of familial HCM declined over time (38.8% versus 34.3% versus 32.7%, P<0.001), as well as heart failure symptoms at presentation (New York Heart Association III/IV: 18.1% versus 15.8% versus 12.6%, P<0.001). Left ventricular hypertrophy became less marked over time (maximum wall thickness: 20\ub16 versus 18\ub15 versus 17\ub15 mm, P<0.001), while prevalence of obstructive HCM was greater in recent cohorts (peak gradient >30 mm\u2009Hg: 31.9% versus 39.3% versus 39.0%, P=0.001). Consistent with decreasing phenotypic severity, yield of pathogenic/likely pathogenic variants at genetic testing decreased over time (57.7% versus 45.6% versus 38.4%, P<0.001). CONCLUSIONS: Evolving HCM populations include progressively greater representation of older patients with sporadic disease, mild phenotypes, and genotype-negative status. Such trend suggests a prominent role of imaging over genetic testing in promoting HCM diagnoses and urges efforts to understand genotype-negative disease eluding the classic monogenic paradigm

    Nationwide multidisciplinary consensus on the clinical management of Merkel cell carcinoma: a Delphi panel

    Get PDF
    Merkel cell carcinoma (MCC) is a rare and highly aggressive cutaneous neuroendocrine carcinoma. The MCC incidence rate has rapidly grown over the last years, with Italy showing the highest increase among European countries. This malignancy has been the focus of active scientific research over the last years, focusing mainly on pathogenesis, new therapeutic trials and diagnosis. A national expert board developed 28 consensus statements that delineated the evolution of disease management and highlighted the paradigm shift towards the use of immunological strategies, which were then presented to a national MCC specialists panel for review. Sixty-five panelists answered both rounds of the questionnaire. The statements were divided into five areas: a high level of agreement was reached in the area of guidelines and multidisciplinary management, even if in real life the multidisciplinary team was not always represented by all the specialists. In the diagnostic pathway area, imaging played a crucial role in diagnosis and initial staging, planning for surgery or radiation therapy, assessment of treatment response and surveillance of recurrence and metastases. Concerning diagnosis, the usefulness of Merkel cell polyomavirus is recognized, but the agreement and consensus regarding the need for cytokeratin evaluation appears greater. Regarding the areas of clinical management and follow-up, patients with MCC require customized treatment. There was a wide dispersion of results and the suggestion to increase awareness about the adjuvant radiation therapy. The panelists unanimously agreed that the information concerning avelumab provided by the JAVELIN Merkel 200 study is adequate and reliable and that the expanded access program data could have concrete clinical implications. An immunocompromised patient with advanced MCC can be treated with immunotherapy after multidisciplinary risk/benefit assessment, as evidenced by real-world analysis and highlighted in the guidelines. A very high consensus regarding the addition of radiotherapy to treat the ongoing focal progression of immunotherapy was observed. This paper emphasizes the importance of collaboration and communication among the interprofessional team members and encourages managing patients with MCC within dedicated multidisciplinary teams. New insights in the treatment of this challenging cancer needs the contribution of many and different experts

    Titin truncating variants affect heart function in disease cohorts and the general population

    Get PDF
    Titin-truncating variants (TTNtv) commonly cause dilated cardiomyopathy (DCM). TTNtv are also encountered in ~1% of the general population, where they may be silent, perhaps reflecting allelic factors. To better understand TTNtv, we integrated TTN allelic series, cardiac imaging and genomic data in humans and studied rat models with disparate TTNtv. In patients with DCM, TTNtv throughout titin were significantly associated with DCM. Ribosomal profiling in rat showed the translational footprint of premature stop codons in Ttn, TTNtv-position-independent nonsense-mediated degradation of the mutant allele and a signature of perturbed cardiac metabolism. Heart physiology in rats with TTNtv was unremarkable at baseline but became impaired during cardiac stress. In healthy humans, machine-learning-based analysis of high-resolution cardiac imaging showed TTNtv to be associated with eccentric cardiac remodeling. These data show that TTNtv have molecular and physiological effects on the heart across species, with a continuum of expressivity in health and disease

    Evaluation of gene validity for CPVT and short QT syndrome in sudden arrhythmic death

    Get PDF
    Aims Catecholaminergic polymorphic ventricular tachycardia (CPVT) and short QT syndrome (SQTS) are inherited arrhythmogenic disorders that can cause sudden death. Numerous genes have been reported to cause these conditions, but evidence supporting these gene–disease relationships varies considerably. To ensure appropriate utilization of genetic information for CPVT and SQTS patients, we applied an evidence-based reappraisal of previously reported genes. Methods and results Three teams independently curated all published evidence for 11 CPVT and 9 SQTS implicated genes using the ClinGen gene curation framework. The results were reviewed by a Channelopathy Expert Panel who provided the final classifications. Seven genes had definitive to moderate evidence for disease causation in CPVT, with either autosomal dominant (RYR2, CALM1, CALM2, CALM3) or autosomal recessive (CASQ2, TRDN, TECRL) inheritance. Three of the four disputed genes for CPVT (KCNJ2, PKP2, SCN5A) were deemed by the Expert Panel to be reported for phenotypes that were not representative of CPVT, while reported variants in a fourth gene (ANK2) were too common in the population to be disease-causing. For SQTS, only one gene (KCNH2) was classified as definitive, with three others (KCNQ1, KCNJ2, SLC4A3) having strong to moderate evidence. The majority of genetic evidence for SQTS genes was derived from very few variants (five in KCNJ2, two in KCNH2, one in KCNQ1/SLC4A3). Conclusions Seven CPVT and four SQTS genes have valid evidence for disease causation and should be included in genetic testing panels. Additional genes associated with conditions that may mimic clinical features of CPVT/SQTS have potential utility for differential diagnosis

    Titin-truncating variants affect heart function in disease cohorts and the general population

    Get PDF
    Titin-truncating variants (TTNtv) commonly cause dilated cardiomyopathy (DCM). TTNtv are also encountered in ~1% of the general population, where they may be silent, perhaps reflecting allelic factors. To better understand TTNtv, we integrated TTN allelic series, cardiac imaging and genomic data in humans and studied rat models with disparate TTNtv. In patients with DCM, TTNtv throughout titin were significantly associated with DCM. Ribosomal profiling in rat showed the translational footprint of premature stop codons in Ttn, TTNtv-position-independent nonsense-mediated degradation of the mutant allele and a signature of perturbed cardiac metabolism. Heart physiology in rats with TTNtv was unremarkable at baseline but became impaired during cardiac stress. In healthy humans, machine-learning-based analysis of high-resolution cardiac imaging showed TTNtv to be associated with eccentric cardiac remodeling. These data show that TTNtv have molecular and physiological effects on the heart across species, with a continuum of expressivity in health and disease
    corecore