192 research outputs found

    Reduced graphene oxide-ZnO hybrid composites as photocatalysts: The role of nature of the molecular target in catalytic performance

    Get PDF
    Spurred by controversial literature findings, we enwrapped reduced graphene oxide (rGO) in ZnO hierarchical microstructures (rGO loadings spanning from 0.01 to 2 wt%) using an in situ synthetic procedure. The obtained hybrid composites were carefully characterized, aiming at shining light on the possible role of rGO on the claimed increased performance as photocatalysts. Several characterization tools were exploited to unveil the effect exerted by rGO, including steady state and time resolved photoluminescence, electron microscopies and electrochemical techniques, in order to evaluate the physical, optical and electrical features involved in determining the catalytic degradation of rhodamine B and phenol in water. Several properties of native ZnO structures were found changed upon the rGO enwrapping (including optical absorbance, concentration of native defects in the ZnO matrix and double-layer capacitance), which are all involved in determining the photocatalytic performance of the hybrid composites. The findings discussed in the present work highlight the high complexity of the field of application of graphene-derivatives as supporters of semiconducting metal oxides functionality, which has to be analyzed through a multi-parametric approach

    Measurement of Wall Shear Stress Exerted by Flowing Blood in the Human Carotid Artery: Ultrasound Doppler Velocimetry and Echo Particle Image Velocimetry

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordVascular endothelial cells lining the arteries are sensitive to wall shear stress (WSS) exerted by flowing blood. An important component of the pathophysiology of vascular diseases, WSS is commonly estimated by centerline ultrasound Doppler velocimetry (UDV). However, the accuracy of this method is uncertain. We have previously validated the use of a novel, ultrasound-based, particle image velocimetry technique (echo PIV) to compute 2-D velocity vector fields, which can easily be converted into WSS data. We compared WSS data derived from UDV and echo PIV in the common carotid artery of 27 healthy participants. Compared with echo PIV, time-averaged WSS was lower using UDV (28 ± 35%). Echo PIV revealed that this was due to considerable spatiotemporal variation in the flow velocity profile, contrary to the assumption that flow is steady and the velocity profile is parabolic throughout the cardiac cycle. The largest WSS underestimation by UDV was found during peak systole (118 ± 16%) and the smallest during mid-diastole (4.3± 46%). The UDV method underestimated WSS for the accelerating and decelerating systolic measurements (68 ± 30% and 24 ± 51%), whereas WSS was overestimated for end-diastolic measurements (−44 ± 55%). Our data indicate that UDV estimates of WSS provided limited and largely inaccurate information about WSS and that the complex spatiotemporal flow patterns do not fit well with traditional assumptions about blood flow in arteries. Echo PIV-derived WSS provides detailed information about this important but poorly understood stimulus that influences vascular endothelial pathophysiology.National Institute of HealthNational Institute for Health Research (NIHR

    In Situ-Generated Oxide in Sn-Doped Nickel Phosphide Enables Ultrafast Oxygen Evolution

    Get PDF
    Water splitting is considered one of the most promising approaches to power the globe without the risk of environmental pollution. The oxygen evolution reaction (OER) is even more challenging because the generation of only one oxygen molecule involves the transfer of four e- and removal of four H+ ions from water. Thus, developing highly efficient catalysts to meet industrial requirements remains a focus of attention. Herein, the prominent role of Sn in accelerating the electron transfer kinetics of Ni5P4 nanosheets in OER is reported. The post catalytic survey elucidates that the electrochemically induced Ni-Sn oxides at the vicinity of phosphides are responsible for the observed catalytic activity, delivering current densities of 10, 30, and 100 mA cm-2 at overpotentials of only 173 ± 5.2, 200 ±7.4, and 310 ± 5.5 mV, respectively. The density functional theory calculation also supports the experimental findings from the basis of the difference observed in density of states at the Fermi level in the presence/absence of Sn. This work underscores the role of Sn in OER and opens a promising avenue toward practical implementation of hydrogen production through water splitting and other catalytic reactions

    MoS2 Nanosheets Uniformly Anchored on NiMoO4 Nanorods, a Highly Active Hierarchical Nanostructure Catalyst for Oxygen Evolution Reaction and Pseudo-Capacitors

    Get PDF
    Hierarchical nanostructures have attracted considerable research attention due to their applications in the catalysis field. Herein, we design a versatile hierarchical nanostructure composed of NiMoO4 nanorods surrounded by active MoS2 nanosheets on an interconnected nickel foam substrate. The as-prepared nanostructure exhibits excellent oxygen evolution reaction per-formance, producing a current density of 10 mA cm−2 at an overpotential of 90 mV, in comparison with 220 mV necessary to reach a similar current den-sity for NiMoO4. This behavior originates from the structural/morphological properties of the MoS2 nanosheets, which present numerous surface-active sites and allow good contact with the electrolyte. Besides, the structures can effectively store charges, due to their unique branched network providing accessible active surface area, which facilitates intermediates adsorptions. Particularly, NiMoO4/MoS2 shows a charge capacity of 358 mAhg−1 at a current of 0.5 A g−1 (230 mAhg−1 for NiMoO4), thus suggesting promising applications for charge-storing devices

    Photoelectrochemical Valorization of Biomass Derivatives with Hematite Photoanodes Modified by Cocatalysts

    Get PDF
    The solar-driven oxidation of biomass to valuable chemicals is rising as a promising anodic reaction in photoelectrochemical cells, replacing the sluggish oxygen evolution reaction and improving the added value of the energy conversion process. Herein, the photooxidation of 5-hydroxymethylfurfural into furan dicarboxylic acid (FDCA) is performed in basic aqueous environment (borate buffer, pH 9.2), with the addition of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) as redox mediator. Because of its good stability, cost-effectiveness, and nontoxicity, titanium-modified hematite (Ti:Fe2O3) photoanodes are investigated to this aim, and their performance is tuned by engineering the semiconductor surface with a thin layer of Co-based cocatalysts, i.e., cobalt iron oxide (CoFeO x ) and cobalt phosphate (CoPi). Interestingly, the electrode modified with CoPi shows improved efficiency and selectivity toward the final product FDCA The source of this enhancement is correlated to the effect of the cocatalyst on the charge carrier dynamics, which is investigated by electrochemical impedance spectroscopy and intensity-modulated photocurrent spectroscopy analysis. In addition, the results of the latter are interpreted through a novel approach called Lasso distribution of relaxation time, revealing that CoPi cocatalyst is effective in the suppression of the recombination processes and in the enhancement of direct hole transfer to TEMPO

    NiMoO4@Co3O4 Core–Shell Nanorods: In Situ Catalyst Reconstruction toward High Efficiency Oxygen Evolution Reaction

    Get PDF
    The sluggish kinetics of the oxygen evolution reaction (OER) is the bottleneck for the practical exploitation of water splitting. Here, the potential of a core–shell structure of hydrous NiMoO4 microrods conformally covered by Co3O4 nanoparticles via atomic layer depositions is demonstrated. In situ Raman and synchrotron-based photoemission spectroscopy analysis confirms the leaching out of Mo facilitates the catalyst reconstruction, and it is one of the centers of active sites responsible for higher catalytic activity. Post OER characterization indicates that the leaching of Mo from the crystal structure, induces the surface of the catalyst to become porous and rougher, hence facilitating the penetration of the electrolyte. The presence of Co3O4 improves the onset potential of the hydrated catalyst due to its higher conductivity, confirmed by the shift in the Fermi level of the heterostructure. In particular NiMoO4@Co3O4 shows a record low overpotential of 120 mV at a current density of 10 mA cm−2, sustaining a remarkable performance operating at a constant current density of 10, 50, and 100 mA cm−2 with negligible decay. Presented outcomes can significantly contribute to the practical use of the water-splitting process, by offering a clear and in-depth understanding of the preparation of a robust and efficient catalyst for water-splitting

    pH Switchable Water Dispersed Photocatalytic Nanoparticles

    Get PDF
    Photogeneration of Reactive Oxygen Species (ROS) finds applications in fields as different as nanomedicine, art preservation, air and water depollution and surface decontamination. Here we present photocatalytic nanoparticles (NP) that are active only at acidic pH while they do not show relevant ROS photo-generation at neutral pH. This dual responsivity (to light and pH) is achieved by stabilizing the surface of TiO2 NP with a specific organic shell during the synthesis and it is peculiar of the achieved core shell-structure, as demonstrated by comparison with commercial photocatalytic TiO2 NP. For the investigation of the photocatalytic activity, we developed two methods that allow real time detection of the process preventing any kind of artifact arising from post-treatments and delayed analysis. The reversibility of the pH response was also demonstrated as well as the selective photo-killing of cancer cells at acidic pH
    • …
    corecore