644 research outputs found

    A numerical investigation of the Milky Way and of the satellite tidal debris in the Galactic environment

    Get PDF
    I address the satellite debris distribution in the Milky Way (MW) environment by means of N-body simulations, combining full N-body MW models with realistic high-resolution N-body satellites and cosmologically motivated initial conditions. For the choice of the code, I perform a benchmark on previous N-body simulations of the MW environment, proving that Gadget-2 performs similar to more modern codes, and that Gadget-4 offers an improved momentum conservation compared to Gadget-2. Then, with Gadget-4 I simulate the satellite debris distribution in the MW environment. Stars are stripped less efficiently than dark matter (DM) from the satellites and larger fractions of stellar debris are found in the MW central regions, where the stellar and DM debris have different orientations and do not change them significantly if the MW disc is initially tilted. I conclude that the satellite initial conditions have more impact than the disc on the local debris orientation, and that the DM and stellar debris are spatially uncorrelated. Finally, I present a study of the bar in an N-body MW model that matches the observational constraints of the Galaxy. The strong bar formed in this simulation is a slow rotator that influences the local disc kinematics and dynamics and does not present significant buckling

    Gas accretion and counter-rotation in disk galaxies: N-body simulations of mergers with a dwarf galaxy

    Get PDF
    Dopo un'introduzione alla controrotazione nelle galassie a disco e al ruolo svolto a riguardo dalle fusioni con le galassie nane, presento il codice a N- corpi ChaNGa e mostro i risultati di un testo comparativo con un altro codice, gasoline. Infine, discuto i risultati di alcune simulazioni a N-corpi di fusioni tra una galassia a disco e una galassia nana, concentrando l'attenzione sull'accrescimento di gas retrogrado nella galassia ospite.ope

    Pliocene crustal shortening on the Tyrrhenian side of the northern Apennines: evidence from the Gavorrano antiform (southern Tuscany, Italy)

    Get PDF
    The northern Tyrrhenian Sea and the inner northern Apennines are classically regarded as a late Miocene–Pleistocene back-arc system developed as a consequence of slab rollback along active subduction zones. We present new geological and structural data on the Gavorrano antiform, a key sector of the inner northern Apennines. Lying close to the northern Tyrrhenian Sea, it provides clear evidence of Pliocene shortening deformation and magma emplacement. The orientation of 1 (N50°E–N80°E) derived by fault slip data inversion is consistent with a general ENE–WSW shortening direction. Furthermore, this ENE–WSW-trending orientation of 1 is compatible with the compressive deformation recorded in coeval sedimentary basins. On this basis we suggest that the inner northern Apennines were affected by crustal shortening during the Pliocene. This scenario matches well geophysical data suggesting that since the Late Messinian (6–5 Ma) subduction rollback and back-arc extension strongly decreased in the northern Tyrrhenian Sea, whereas they continued as active processes in the southern Tyrrhenian Sea

    SITOGEO: A geographic database used for GIS applications

    Get PDF
    This contribution aims to present the geographic database “SITOGEO” developed with GIS technology. This database manages data of different nature, source and resolution (land images, digital elevation model, cartographic maps and vector data) covering the whole of Italy. In this paper we show that our database can be used for the assessment, management and mitigation of risks regarding the preservation of cultural heritage and as valid support for the remote-sensing technologies

    Fluids mobilization in Arabia Terra, Mars: depth of pressurized reservoir from mounds self-similar clustering

    Full text link
    Arabia Terra is a region of Mars where signs of past-water occurrence are recorded in several landforms. Broad and local scale geomorphological, compositional and hydrological analyses point towards pervasive fluid circulation through time. In this work we focus on mound fields located in the interior of three casters larger than 40 km (Firsoff, Kotido and unnamed crater 20 km to the east) and showing strong morphological and textural resemblance to terrestrial mud volcanoes and spring-related features. We infer that these landforms likely testify the presence of a pressurized fluid reservoir at depth and past fluid upwelling. We have performed morphometric analyses to characterize the mound morphologies and consequently retrieve an accurate automated mapping of the mounds within the craters for spatial distribution and fractal clustering analysis. The outcome of the fractal clustering yields information about the possible extent of the percolating fracture network at depth below the craters. We have been able to constrain the depth of the pressurized fluid reservoir between ~2.5 and 3.2 km of depth and hence, we propose that mounds and mounds alignments are most likely associated to the presence of fissure ridges and fluid outflow. Their process of formation is genetically linked to the formation of large intra-crater bulges previously interpreted as large scale spring deposits. The overburden removal caused by the impact crater formation is the inferred triggering mechanism for fluid pressurization and upwelling, that through time led to the formation of the intra-crater bulges and, after compaction and sealing, to the widespread mound fields in their surroundings

    Pliocene crustal shorthening on the Tyrrhenian side of the northern Apennones: evidence from the Gavorrano antiform (southern Tuscany, Italy)

    Get PDF
    The northern Tyrrhenian Sea and the inner northern Apennines are classically regarded as a late Miocene-Pleistocene back-arc system developed as a consequence of slab roll-back along active subduction zones. We present new geological and structural data on the Gavorrano antiform, a key sector of the inner northern Apennines. Lying close to the northern Tyrrhenian Sea, it provides clear evidence of Pliocene shortening deformation and magma emplacement. The orientation of σ1 (N50°E - N80°E) derived by fault slip data inversion is consistent with a general ENE –WSW shortening direction. Furthermore, this ENE-trending orientation of σ1 is compatible with the compressive deformation recorded in coeval sedimentary basins. On this basis we suggest that the inner northern Apennines were affected by crustal shortening during the Pliocene. This scenario matches well geophysical data suggesting that since the Late Messinian (6 – 5 Ma) subduction rollback and back-arc extension strongly decreased in the northern Tyrrhenian Sea, while they continued as active processes in the southern Tyrrhenian Sea

    Fissural volcanism, polygenetic volcanic fields, and crustalthickness in the Payen Volcanic Complex on the central Andes foreland (Mendoza, Argentina)

    Get PDF
    Shield volcanoes, caldera-bearing stratovolcanoes, and monogenetic cones compose the large fissural Payen Volcanic Complex, located in the Andes foreland between latitude 35\uc2\ub0S and 38\uc2\ub0S. The late Pliocene-Pleistocene and recent volcanic activity along E-W trending eruptive fissures produced basaltic lavas showing a within-plate geochemical signature. The spatial distribution of fractures and monogenetic vents is characterized by self-similar clustering with well defined power law distributions. Vents have average spacing of 1.27 km and fractal exponent D = 1.33 defined in the range 0.7-49.3 km. The fractal exponent of fractures is 1.62 in the range 1.5-48.1 km. The upper cutoffs of fractures and vent fractal distributions (about 48-49 km) scale to the crustal thickness in the area, as derived from geophysical data. This analysis determines fractured media (crust) thickness associated with basaltic retroarc eruptions. We propose that the Payen Volcanic Complex was and is still active under an E-W crustal shortening regime. \uc2\ua9 2008 by the American Geophysical Union

    Mapping of major volcanic structures on Pavonis Mons in Tharsis, Mars

    Get PDF
    Pavonis Mons, with its 300 km of diameter and 14 km of height, is one of the largest volcanoes of Mars. It rests on a topographic high called Tharsis rise and it is located in the centre of a SW-NE trending row of volcanoes, including Arsia and Ascraeus Montes. In this study we mapped and analyzed the volcanic and tectonic structures of Pavonis Mons in order to understand its formation and the relationship between magmatic and tectonic activity. We use the mapping ArcGIS software and vast set of high resolution topographic and multi-spectral images including CTX (6 m/pixel) as well as HRSC (12.5 m/pixel) and HiRiSE (∼0.25 m/pixel) mosaic images. Furthemore, we used MOLA (∼463 m/pixel in the MOLA MEGDR gridded topographic data), THEMIS thermal inertia (IR-day, 100 m/pixel) and THEMIS (IR-night, 100 m/pixel) images global mosaic to map structures at the regional scale. We found a wide range of structures including ring dykes, wrinkle ridges, pit chains, lava flows, lava channels, fissures and depressions that we preliminary interpreted as coalescent lava tubes. Many sinuous rilles have eroded Pavonis’ slopes and culminate with lava aprons, similar to alluvial fans. South of Pavonis Mons we also identify a series of volcanic vents mainly aligned along a SW-NE trend. Displacements across recent crater rim and volcanic deposits (strike slip faults and wrinkle ridges) have been documented suggesting that, at least during the most recent volcanic phases, the regional tectonics has contributed in shaping the morphology of Pavonis. The kinematics of the mapped structures is consistent with a ENE-SSW direction of the maximum horizontal stress suggesting a possible interaction with nearby Valles Marineris. Our study provides new morphometric analysis of volcano-tectonic features that can be used to depict an evolutionary history for the Pavonis Volcano

    Best-fit results from application of a thermo-rheological model for channelized lava flow to high spatial resolution morphological data

    Get PDF
    The FLOWGO thermo-rheological model links heat loss, core cooling, crystallization, rheology and flow dynamics for lava flowing in a channel. We fit this model to laser altimeter (LIDAR) derived channel width data, as well as effusion rate and flow velocity measurements, to produce a best-fit prediction of thermal and rheological conditions for lava flowing in a ~1.6 km long channel active on Mt. Etna (Italy) on 16th September 2004. Using, as a starting condition for the model, the mean channel width over the first 100 m (6 m) and a depth of 1 m we obtain an initial velocity and instantaneous effusion rate of 0.3–0.6 m/s and ~3 m3/s, respectively. This compares with field- and LIDAR-derived values of 0.4 m/s and 1–4 m3/s. The best fit between model-output and LIDAR-measured channel widths comes from a hybrid run in which the proximal section of the channel is characterised by poorly insulated flow and the medial-distal section by well-insulated flow. This best-fit model implies that flow conditions evolve down-channel, where hot crusts on a free flowing channel maximise heat losses across the proximal section, whereas thick, stable, mature crusts of ′a′a clinker reduce heat losses across the medial-distal section. This results in core cooling per unit distance that decreases from ~0.02–0.015°C m−1 across the proximal section, to ~0.005°C m−1 across the medial-distal section. This produces an increase in core viscosity from ~3800 Pa s at the vent to ~8000 Pa s across the distal section

    Earth is speaking: listen her! On-line questionnaire about anomalous geological and biological phenomena

    Get PDF
    Earthquakes can be associated with non-seismic phenomena which may manifest many weeks before and after the main shock. These phenomena are characterized by ground fractures and soil liquefactions at surface often coupled with degassing events, chemical alterations of water and soils, changes in temperature and/or waters level in the epicentral area. Further manifestations include radio disturbances and light emissions. On the other hand, anomalous behavior of animals has been reported to occur before environmental changes. The co-occurrence of several phenomena may be considered as a signal of subsurface changes, and their analysis may be used as possible forecast indicators for seismic events, landslides, damages in infrastructure (e.g., dam) and groundwaters contamination. In order to obtain an accurate statistical analysis of these factors, a pre-crisis large database over a prolonged period of time is a pre-requisite. To this end, we elaborated a questionnaire for the population to pick up signs about anomalous phenomena like as: animal behavior, geological manifestations, effect on vegetation, degassing, changes on aquifers, wells and springs. After the January 25, 2013, mainshock (ML 4.8) in the Garfagnana seismic district, the Bagni di Lucca Municipality was selected as pilot site for testing this questionnaire. The complexity, variety and extension of this territory (165 kmq) sound suitable for this project. Bagni di Lucca is located in the southern border of the Garfagnana seismogenic source, characterized by the carbonate Mesozoic sequences and the Tertiary terrigenous sedimentary deposits of the Tuscan Nappe. The questionnaire was published on Bagni di Lucca web site (https://docs.google.com/file/d/0Bzw3vOYX47XoTGltTVJRbkJuajA/edit) in collaboration with Municipal Commitee, Local Civil Protection and Local Red Cross, and sent by ordinary mail to the citizenry. It is possible to answer to the questionnaire, also anonymously, direct on line (https://docs.google.com/forms/d/1LVNVQFzMoJJfNxp2eSPAc4pcwj4_qIdbAnvbCWGyXy8/viewform?pli=1), calling the Local Civil Protection or Local Red Cross, and by mail. In a second time, an application for Smartphone and Tablets will be developed to allow a faster reply. The questionnaire, constituted by eleven questions and organized in four macro-themes (i.e. animal behavior, geological factors, vegetation anomalies and hydrogeological changes) has been published in June 2013 and will remain on-line for several years. Indeed, the social perception is not fully trustworthy during and soon after an earthquake. So far this is the first attempt to acquire data during quiescent times for comparison with post-seismic ones. This approach may provide clues to identify phenomena properly linked to the event. This questionnaire can be a useful tool to educate population not only about earthquake precursors but also to recognize the "Earth language". Submitted testimonies will be statistically analyzed evidencing the specific responses to the different phenomena in space and time. On the basis of obtained results the questionnaire project could be extended to national level
    • …
    corecore