68 research outputs found

    New Trends in Substrates and Biogas Systems in Poland

    Get PDF
    The amendment to the Polish Renewable Energy Act creates great opportunities for the development of the biogas market in Poland. Years of experience in biogas production in Western Europe and the development of biogas installations in Poland indicate the requirement to look for alternative substrates to those produced from dedicated crop production (mainly maize silage). Feasible solutions include the use of biodegradable waste from agriculture or industry as well as municipal landfill sites. The usage of these substrates in the methane fermentation process offers low cost, high biogas production and the safe management of biowaste. The arguments for using them in biogas installations are persuasive. This article presents new approaches of biogas plant installation solutions which allows for the effective fermentation of biowaste from animal and vegetable production, from the agro-food industry and from municipal wast

    Studies of inherently conducting polymers in ionic liquids

    Get PDF
    In this dissertation, the effect of ionic liquid (IL) or classical electrolyte (CE) employed on the redox behaviour of many inherently conducting polymers (ICPs) was investigated with the ultimate goal of producing flexible batteries. ICPs can be used in a range of unique applications, and also to replace many metal conductors or inorganic semiconductors. Commercialisation of ICPs has, however, been limited. Ion and solvent transport in ICPs during redox cycling almost universally leads to breakdown of redox activity and desired properties of the material. ILs comprise of neat ions in the form of a room temperature melt. ILs show great promise as novel electrolytes to enhance the stability of ICPs beyond that observed in CEs and paves the way to commercialisation of ICP devices. Chapter 3 describes fundamental investigations of ICP / IL systems on Pt disk electrodes. The redox cycling stability of polypyrrole was increased over those of CE systems in the IL 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF6). The electroactivity in this system showed no degradation over 900 redox cycles. The use of 1-ethyl-3-methylimidazolium (bis) trifluoromethanesulfonimide (EMITFSI) also improved the redox stability of polypyrrole in comparison to the CE systems. The stable potential windows of polypyrrole were significantly improved in both IL systems compared to CEs. The transitional behaviour between ILs and CEs was investigated by diluting ILs in a common neutral solvent electrolyte, propylenecarbonate (PC). In such IL / CE mixtures,differences were noted in the electrolyte conductivity profile and ICP electroactivity with respect to concentration of IL. BMIPF6 exhibited a significantly higher degree of ion pairing than EMITFSI, and the strong ion pairing property of BMIPF6 is thought to be responsible for unique electrochemical observations absent from the ICP in EMITFSI systems. N-doping is an attractive feature of some ICPs and has promise in charge storage applications, providing significant driving potential differences of two or more volts against p-doped electrodes. As ILs were found to enhance redox stability of common pdoping processes in ICPs, investigations were conducted in Chapter 4 to see if the same was true for inherently unstable n-doping processes. Poly-3-p-flourophenylthiophene (P3PFTh) was chosen as a model n-doping system, due to its well published n-doping behaviour in classical electrolytes. Surprisingly, n-doping responses of P3PFTh in EMITFSI were very poor. The reasons behind this were explored by testing other n-dopable polymers in EMITFSI to isolate whether EMITFSI was inherently preventing n-doping, and P3PFTh was tested with different ILs to investigate P3PFTh / EMITFSI incompatibility. EMITFSI used as an electrolyte was found to decrease electroactivity of the n-doping processes in most polythiophenes, with the exception of polybithiophene (PBiTh). The stability of n-doping PBiTh in EMITFSI did not, however, improve to an extent that would allow derivative devices to be practical. Spectroelectrochemical Raman studies of the n-doping processes of polythiophenes in EMITFSI were conducted in-situ to reveal behaviour that may be responsible for poor electrochemical responses. Raman studies showed that both the p-doping and n-doping process in polythiophenes occurred with a ‘reverse’ mechanism of ion expulsion upon doping (whereas doping processes of ICPs in CEs usually occur by ion insertion). The Raman studies also indicated that the physical structure of polythiophene had a large effect on the resulting electrochemistry, to an extent that impeded doping processes. The structure-activity relationships of P3PFTh were investigated by CV using a range of growth and cycling electrolytes. Observations were analysed chemometrically to identify the effects on electrochemical parameters of electrolyte component (anion or cation), whether the dominating effect was from growth or cycling electrolyte, and which particular doping / dedoping process was affected by these parameters. Chapter 5 describes electrochemical charge storage devices based on IL electrolytes using various substrates, polymers and configurations. The highest capacity device was based on polyaniline doped with ferrocene sulphonic acid on carbon fibre textile for both anode and cathode, with a polyvinylidene fluoride (PVDF) separator and EMITFSI electrolyte. The flexible charge storage device produced in this way had a maximum charge capacity of 58 mAh/g, but degraded quickly on cycling. The most stable device was constructed similarly to the highest capacity device, but used polypyrrole and poly- 3-methylthiophene electrodes, with maximum charge capacity of 17 mAh/g, remaining unchanged for 60 cycles

    Analysis of the Energy and Material Use of Manure as a Fertilizer or Substrate for Biogas Production during the Energy Crisis

    No full text
    The main goal of the publication was to show the differences in profit when using manure directly as fertilizer (after the storage period) or as a substrate for biogas plants with a cogeneration unit, and then using the digestate for fertilization purposes. The comparison covers the streams of costs, revenues and profits over the year between 14 October 2021 and 14 October 2022. This period was chosen due to the energy and fertilization crisis caused by the war in Ukraine. Profitability forecasts for biogas investments (including the payback period) are presented, with the reduction of greenhouse gas emissions, i.e., methane and nitrous oxide, taken into account. The performed economic, energy and ecological calculations of manure management can be used as guidelines when considering investing in biogas plants, as well as what is recently becoming a new trend: the carbon footprint of dairy production. Input substrate parameters, gaseous emissions and biogas yields were obtained from own research (manure samples were collected) and from literature data, including guidelines for international and national IPCC protocols

    The Biogas Potential of Oxytree Leaves

    No full text
    This article describes the characteristics of th Oxytree (Paulownia) plant, both in terms of its impact on GHG emissions and its potential use to produce biofuel, i.e., biogas. The described research involved the physico-chemical and elemental analysis of the Oxytree leaf composition and its biogas efficiency depending on the harvesting method. Three different scenarios were considered: the freshest possible leaves—processed immediately after stripping from the living tree; after the first day of collection from pruned or harvested wood; after the first week of collection from pruned or harvested wood. The best results were achieved for the harvest of the freshest leaves—on average 430 m3/Mg (biogas) and 223 m3/Mg (methane) per dry organic mass. The highest yield of biogas in terms of fresh mass (FM) was obtained for leaves fallen and collected after 1 day—123 m3/Mg FM, and 59 m3/Mg FM (methane). Processing Oxytree leaves through anaerobic digestion will contribute to reducing the carbon footprint of wood biomass production and is an additional source of renewable energy and fertilizer product

    The Impact of Manure Use for Energy Purposes on the Economic Balance of a Dairy Farm

    No full text
    The use of methane fermentation in mesophilic conditions for the energy use of cow manure and additional co-substrates from the farm can bring a small dairy farm (140 dairy cows) financial benefits of up to EUR 114,159 per year. Taking into account the need to pay for emissions calculated as carbon dioxide equivalent, this profit could be reduced to EUR 81,323 per year. With the traditional direct use of manure, this profit would drop by as much as 60% to the level of EUR 33,944 per year. Therefore, the introduction of fees for emissions may significantly burden current dairy farms. As has already been shown, just compacting and covering the manure (which costs approx. EUR 2000 per year for 140 cows) would give almost twice as much profit—EUR 64,509 per year. Although an investment in a small biogas plant with a cogeneration unit on a family dairy farm may have a payback period of less than 6.5 years and a return of capital employed of 16%, most small farms in the world will not be able to afford its construction without external subsidies. At the same time, it would make it possible to reduce emissions by almost 270 times—from 41,460 to 154 tons of CO2eq per year—and the possibility of preserving valuable nutrients and minerals and supporting soil properties in the digestate. Therefore, it seems necessary for Europe to introduce a support system for small- and medium-sized farms with this type of investment in the near future in a much larger form than it has been so far

    Loss of Energy and Economic Potential of a Biogas Plant Fed with Cow Manure due to Storage Time

    No full text
    The aim of the publication was to analyze investments in biogas plants with a cogeneration unit for an average size dairy farm. The basis for the calculation was the use of cow manure as the only substrate in methane fermentation. The economic balance also includes ecological and service aspects. The study also shows how much energy and quality potential is lost due to improper manure management and what impact a single farm with dairy cows has on the emission of carbon dioxide equivalent. It has been estimated that as a result of improper storage of manure, even 2/3 of its fertilizing, energy and economic value can be lost, while causing damage to the environment. It has been estimated that for a single farm with 100 cows, without government mechanisms subsidizing investments in RES, the payback period exceeds 15 years, and the Return of Capital Employed is slightly more than 6%

    Energy and Economic Balance between Manure Stored and Used as a Substrate for Biogas Production

    No full text
    The aim of the study is to draw attention to the fact that reducing methane and nitrous oxide emissions as a result of traditional manure storage for several months in a pile is not only a non-ecological solution, but also unprofitable. A solution that combines both aspects—environmental and financial—is the use of manure as a substrate for a biogas plant, but immediately—directly after its removal from the dairy barn. As part of the case study, the energy and economic balance of a model farm with dairy farming for the scenario without biogas plant and with a biogas plant using manure as the main substrate in methane fermentation processes was also performed. Research data on the average emission of ammonia and nitrous oxide from 1 Mg of stored manure as well as the results of laboratory tests on the yield of biogas from dairy cows manure were obtained on the basis of samples taken from the farm being a case study. The use of a biogas installation would allow the emission of carbon dioxide equivalent to be reduced by up to 100 Mg per year. In addition, it has been shown that the estimated payback period for biogas installations is less than 5 years, and with the current trend of increasing energy prices, it may be even shorter—up to 4 years

    "Building the company's position in the international arena on the example of WIŚNIOWSKI"

    No full text
    Niniejsza praca magisterska pokazuje drogę, jaką firma WIŚNIOWSKI przeszła od mikroprzedsiebiorstwa do potężnej fabryki zatrudniającej tysiące pracowników oraz sprzedającej swoje produkty do większości europejskich krajów. Poza teoretycznym rozważaniem na tematy marketingowe związane ze sprzedażą, eksportem i marketingiem pojawia się praktyczna analiza działań firmy szczególnie na przestrzeni ostatnich 20 lat, kiedy powstał w niej dział sprzedaży zagranicznej. Praca zawiera również ankietę, w której na tematy związane z eksportową sprzedażą wypowiedzili się zagraniczni partnerzy handlowi.This master thesis shows the path WIŚNIOWSKI company went through from a micro-company to a powerful company employing thousands of workers and selling its products to most European countries. Apart from theoretical considerations on marketing issues related to sales, export and marketing, there is a practical analysis of the company's activities, especially over the last 20 years, when the company's export sales department was established. The master thesis also contains a questionnaire in which foreign trade partners express their opinions on export sales

    ATHLETE'S IMAGE CREATED BY THE MEDIA

    No full text
    Cel pracy licencjackiej związany jest z wizerunkiem sportowców, który kreują media. Praca składa się z czterech rozdziałów. Pierwszy rozdział pracy opisuje metodologiczne podstawy badań własnych. Drugi rozdział szczegółowo charakteryzuje pojęcie PR oraz wskazuje podstawy kreowania wizerunkiem. Kolejny rozdział sportowców jako produkt marketingowy. Ostatni rozdział pracy licencjackiej związany jest z analizą badań własnych. Badani studenci oceniali, w jakim stopniu media wpływają na postrzeganie sportowców i ich wizerunku.The purpose of the bachelor's thesis is related to the image of athletes who create the media. The work consists of four chapters. The first chapter describes the methodological basis of our own research. The second chapter details the concept of PR and highlights the basics of image creation. Another chapter of athletes as a marketing product. The final chapter of the bachelor's thesis is related to the analysis of own research. The students assessed the extent to which the media influences the perception of athletes and their image
    corecore