24 research outputs found

    Bio-encapsulation d'oxydases et de déshydrogénases par électrogénération sol-gel sur réseau de nano-objets

    No full text
    Accès restreint aux membres de l'Université de Lorraine jusqu'au 2015-06-03In this thesis, the research work was focused on the immobilization of different enzymes (oxidases and dehydrogenases) into biocomposite silica matrix with the aim of amperometric biosensors construction. Then, the structured nanomaterials were introduced in the system in order to improve the characteristics of biosensors. The method of electrochemically-assisted deposition was chosen for the immobilization of enzymes on the surface of nanomaterials as it provides possibility of fine tuning of film thickness allowing covering each individual nanoobject. The feasibility of this was shown while modifying the platinum nanofibers, which demonstrate high electroactive surface and H2O2 oxidation rate, with silica-glucose oxidase biocomposite. The electrochemically-assisted deposition also allows the express modification of gold screen-printed electrodes with silica-choline oxidase biocomposite making possible the quick fabrication of cheap choline biosensors with high analytical characteristics. The carbon nanotubes was chosen as matrix for the immobilization of dehydrogenases as they have high surface area and electrocatalytic properties towards the oxidation of enzymatic co-factor NADH. The method of electrophoretic deposition was used for the creation of porous CNT-layer with controllable thickness on the surface of glassy carbon electrode. Created thereby matrix demonstrated good electrochemical performance significantly shifting the potential and increasing sensitivity of NADH oxidation. Then the biocomposite silica-sorbitol dehydrogenase film was deposited on the CNT-layer by means of electrochemically-assisted deposition for the construction of high-performance sorbitol biosensor. The method of electrophoretic deposition was also applied for the first time for the construction of thick macroporous CNT-assemblies with uniform pore size using template approach. Such macroporous CNT-electrode was used for the co-immobilization of sorbitol dehydrogenase and enzymatic co-factor inside the pores demonstrating higher sensitivity of sorbitol detection in comparison with nonporous CNT-electrodeDans cette thèse, des travaux de recherche ont été menés pour immobiliser différentes enzymes (oxydases et déshydrogénases) au sein d'une matrice de silice dans le but de construire un biocapteur ampérométrique. Des matériaux nanostructurés ont ensuite été introduit dans ce système afin d'améliorer les caractéristiques analytiques de ces biocapteurs. La méthode de dépôt sol-gel par assistance électrochimique a été choisie pour l'immobilisation des enzymes à la surface des électrodes et des nanomatériaux car elle donne la possibilité de contrôler finement l'épaisseur du film déposé afin de couvrir individuellement ces objets. La faisabilité de cette approche a été montrée par la modification de nanofibres de platine présentant une grande surface active pour l'oxydation de H2O2 produit en présence de biocomposite silice-glucose oxidase. Le dépôt sol-gel électrochimiquement assisté permet également la modification d'électrodes imprimées en or par un biocomposite silice-choline oxidase, ce qui donne la possibilité de construire rapidement un biocapteur à choline présentant de très bonnes caractéristiques analytiques. Les nanotubes de carbone ont également été choisis comme matrice pour l'immobilisation de déshydrogénases car ils permettent d'obtenir une grande aire spécifique et des propriétés catalytiques intéressantes pour l'oxydation du co-facteur enzymatique NADH. La méthode de dépôt électrophorétique a été utilisée pour créer des couches de nanotubes poreuses ayant une épaisseur contrôlée à la surface d'un support de carbone vitreux. Les électrodes ainsi préparées présentent de bonne performances électrochimiques, permettant notamment de déplacer le potentiel d'oxydation de NADH et d'augmenter la sensibilité de détection. Un biocomposite silice-sorbitol déshydrogénase a ensuite été déposé à la surface de la couche de nanotubes de carbone en utilisant la méthode de dépôt sol-gel assisté par électrochimie pour construire un biocapteur à sorbitol. La méthode de dépôt électrophorétique a enfin été appliquée pour la première fois à l'élaboration d'assemblages de nanotubes de carbone macroporeux. De tells assemblages ont été utilisés comme support pour co-immobiliser la sorbitol déshydrogénase et le co-facteur enzymatique au sein des macropores, ce qui a permis d'augmenter la sensibilité de la détection du sorbitol par comparaison avec un assemblage de nanotubes de carbone non macroporeu

    Bioencapsulation of oxidases and dehydrogenases using electrochemically-assisted sol-gel deposition on the nanoobjects network

    No full text
    Dans cette thèse, des travaux de recherche ont été menés pour immobiliser différentes enzymes (oxydases et déshydrogénases) au sein d'une matrice de silice dans le but de construire un biocapteur ampérométrique. Des matériaux nanostructurés ont ensuite été introduit dans ce système afin d'améliorer les caractéristiques analytiques de ces biocapteurs. La méthode de dépôt sol-gel par assistance électrochimique a été choisie pour l'immobilisation des enzymes à la surface des électrodes et des nanomatériaux car elle donne la possibilité de contrôler finement l'épaisseur du film déposé afin de couvrir individuellement ces objets. La faisabilité de cette approche a été montrée par la modification de nanofibres de platine présentant une grande surface active pour l'oxydation de H2O2 produit en présence de biocomposite silice-glucose oxidase. Le dépôt sol-gel électrochimiquement assisté permet également la modification d'électrodes imprimées en or par un biocomposite silice-choline oxidase, ce qui donne la possibilité de construire rapidement un biocapteur à choline présentant de très bonnes caractéristiques analytiques. Les nanotubes de carbone ont également été choisis comme matrice pour l'immobilisation de déshydrogénases car ils permettent d'obtenir une grande aire spécifique et des propriétés catalytiques intéressantes pour l'oxydation du co-facteur enzymatique NADH. La méthode de dépôt électrophorétique a été utilisée pour créer des couches de nanotubes poreuses ayant une épaisseur contrôlée à la surface d'un support de carbone vitreux. Les électrodes ainsi préparées présentent de bonne performances électrochimiques, permettant notamment de déplacer le potentiel d'oxydation de NADH et d'augmenter la sensibilité de détection. Un biocomposite silice-sorbitol déshydrogénase a ensuite été déposé à la surface de la couche de nanotubes de carbone en utilisant la méthode de dépôt sol-gel assisté par électrochimie pour construire un biocapteur à sorbitol. La méthode de dépôt électrophorétique a enfin été appliquée pour la première fois à l'élaboration d'assemblages de nanotubes de carbone macroporeux. De tells assemblages ont été utilisés comme support pour co-immobiliser la sorbitol déshydrogénase et le co-facteur enzymatique au sein des macropores, ce qui a permis d'augmenter la sensibilité de la détection du sorbitol par comparaison avec un assemblage de nanotubes de carbone non macroporeuxIn this thesis, the research work was focused on the immobilization of different enzymes (oxidases and dehydrogenases) into biocomposite silica matrix with the aim of amperometric biosensors construction. Then, the structured nanomaterials were introduced in the system in order to improve the characteristics of biosensors. The method of electrochemically-assisted deposition was chosen for the immobilization of enzymes on the surface of nanomaterials as it provides possibility of fine tuning of film thickness allowing covering each individual nanoobject. The feasibility of this was shown while modifying the platinum nanofibers, which demonstrate high electroactive surface and H2O2 oxidation rate, with silica-glucose oxidase biocomposite. The electrochemically-assisted deposition also allows the express modification of gold screen-printed electrodes with silica-choline oxidase biocomposite making possible the quick fabrication of cheap choline biosensors with high analytical characteristics. The carbon nanotubes was chosen as matrix for the immobilization of dehydrogenases as they have high surface area and electrocatalytic properties towards the oxidation of enzymatic co-factor NADH. The method of electrophoretic deposition was used for the creation of porous CNT-layer with controllable thickness on the surface of glassy carbon electrode. Created thereby matrix demonstrated good electrochemical performance significantly shifting the potential and increasing sensitivity of NADH oxidation. Then the biocomposite silica-sorbitol dehydrogenase film was deposited on the CNT-layer by means of electrochemically-assisted deposition for the construction of high-performance sorbitol biosensor. The method of electrophoretic deposition was also applied for the first time for the construction of thick macroporous CNT-assemblies with uniform pore size using template approach. Such macroporous CNT-electrode was used for the co-immobilization of sorbitol dehydrogenase and enzymatic co-factor inside the pores demonstrating higher sensitivity of sorbitol detection in comparison with nonporous CNT-electrod

    Bioencapsulation of oxidases and dehydrogenases using electrochemically-assisted sol-gel deposition on the nanoobjects network

    No full text
    Dans cette thèse, des travaux de recherche ont été menés pour immobiliser différentes enzymes (oxydases et déshydrogénases) au sein d'une matrice de silice dans le but de construire un biocapteur ampérométrique. Des matériaux nanostructurés ont ensuite été introduit dans ce système afin d'améliorer les caractéristiques analytiques de ces biocapteurs. La méthode de dépôt sol-gel par assistance électrochimique a été choisie pour l'immobilisation des enzymes à la surface des électrodes et des nanomatériaux car elle donne la possibilité de contrôler finement l'épaisseur du film déposé afin de couvrir individuellement ces objets. La faisabilité de cette approche a été montrée par la modification de nanofibres de platine présentant une grande surface active pour l'oxydation de H2O2 produit en présence de biocomposite silice-glucose oxidase. Le dépôt sol-gel électrochimiquement assisté permet également la modification d'électrodes imprimées en or par un biocomposite silice-choline oxidase, ce qui donne la possibilité de construire rapidement un biocapteur à choline présentant de très bonnes caractéristiques analytiques. Les nanotubes de carbone ont également été choisis comme matrice pour l'immobilisation de déshydrogénases car ils permettent d'obtenir une grande aire spécifique et des propriétés catalytiques intéressantes pour l'oxydation du co-facteur enzymatique NADH. La méthode de dépôt électrophorétique a été utilisée pour créer des couches de nanotubes poreuses ayant une épaisseur contrôlée à la surface d'un support de carbone vitreux. Les électrodes ainsi préparées présentent de bonne performances électrochimiques, permettant notamment de déplacer le potentiel d'oxydation de NADH et d'augmenter la sensibilité de détection. Un biocomposite silice-sorbitol déshydrogénase a ensuite été déposé à la surface de la couche de nanotubes de carbone en utilisant la méthode de dépôt sol-gel assisté par électrochimie pour construire un biocapteur à sorbitol. La méthode de dépôt électrophorétique a enfin été appliquée pour la première fois à l'élaboration d'assemblages de nanotubes de carbone macroporeux. De tells assemblages ont été utilisés comme support pour co-immobiliser la sorbitol déshydrogénase et le co-facteur enzymatique au sein des macropores, ce qui a permis d'augmenter la sensibilité de la détection du sorbitol par comparaison avec un assemblage de nanotubes de carbone non macroporeuxIn this thesis, the research work was focused on the immobilization of different enzymes (oxidases and dehydrogenases) into biocomposite silica matrix with the aim of amperometric biosensors construction. Then, the structured nanomaterials were introduced in the system in order to improve the characteristics of biosensors. The method of electrochemically-assisted deposition was chosen for the immobilization of enzymes on the surface of nanomaterials as it provides possibility of fine tuning of film thickness allowing covering each individual nanoobject. The feasibility of this was shown while modifying the platinum nanofibers, which demonstrate high electroactive surface and H2O2 oxidation rate, with silica-glucose oxidase biocomposite. The electrochemically-assisted deposition also allows the express modification of gold screen-printed electrodes with silica-choline oxidase biocomposite making possible the quick fabrication of cheap choline biosensors with high analytical characteristics. The carbon nanotubes was chosen as matrix for the immobilization of dehydrogenases as they have high surface area and electrocatalytic properties towards the oxidation of enzymatic co-factor NADH. The method of electrophoretic deposition was used for the creation of porous CNT-layer with controllable thickness on the surface of glassy carbon electrode. Created thereby matrix demonstrated good electrochemical performance significantly shifting the potential and increasing sensitivity of NADH oxidation. Then the biocomposite silica-sorbitol dehydrogenase film was deposited on the CNT-layer by means of electrochemically-assisted deposition for the construction of high-performance sorbitol biosensor. The method of electrophoretic deposition was also applied for the first time for the construction of thick macroporous CNT-assemblies with uniform pore size using template approach. Such macroporous CNT-electrode was used for the co-immobilization of sorbitol dehydrogenase and enzymatic co-factor inside the pores demonstrating higher sensitivity of sorbitol detection in comparison with nonporous CNT-electrodeMETZ-SCD (574632105) / SudocNANCY1-Bib. numérique (543959902) / SudocNANCY2-Bibliotheque electronique (543959901) / SudocNANCY-INPL-Bib. électronique (545479901) / SudocSudocFranceF

    Electrode Nanopatterning for Bioelectroanalysis and Bioelectrocatalysis

    No full text
    Although intensive research in the bioelectroanalysis domain in the last twenty years led to great improvements in protein-based electrode and device performances, their large application remains limited by their stability overtime under operational and resting conditions. One under-studied issue is the role played by the spatial distribution of enzymes on electrocatalysis. Actually, high fluxes in metabolic pathways involve compartmentalization and spatial organization of active biomolecules. In a mimicking way, it can be expected that controlled localization of proteins on electrode surfaces may play a role in the overall electron transfer processes and bioelectrocatalysis performances. In this short review, we will discuss recent developments in surface patterning allowing to tune in a controlled manner the localization and density of enzymes on the electrode surface. We will investigate how mixed functional layers, electrode and biological materials can serve as protein platforms to provide such electrode patterning

    High electrolyte concentration effect on enzymatic oxygen reduction

    No full text
    International audienceThe nature, the composition and the concentration of electrolytes is essential for electrocatalysis involving redox enzymes. Here, we discuss the effect of various electrolyte compositions with increasing ionic strengths on the stability and activity towards O2 reduction of the bilirubin oxidase from Myrothecium verrucaria (Mv BOD). Different salts, Na2SO4, (NH4)2SO4, NaCl, NaClO4, added to a phosphate buffer (PB) were evaluated with concentrations ranging from 100 mM up to 1.7 M. On functionalized carbon nanotube-modified electrodes, it was shown that the catalytic current progressively decreased with increasing salt concentrations. The process was reversible suggesting it was not related to enzyme leakage. The enzyme was then immobilized on gold electrodes modified by self-assembling of thiols. When the enzyme was simply adsorbed, the catalytic current decreased in a reversible way, thus behaving similarly as on carbon nanotubes. Enzyme mobility at the interface induced by a modification in the interactions between the protein and the electrode upon salt addition may account for this behavior. When the enzyme was covalently attached, the catalytic current increased. Enzyme compaction is proposed to be at the origin of such catalytic current increase because of shorter distances between the first copper site electron acceptor and the electrode

    Mutations in the coordination spheres of T1 Cu affect Cu2+-activation of the laccase from Thermus thermophilus

    No full text
    International audienceThermus thermophilus laccase belongs to the sub-class of multicopper oxidases that is activated by the extra binding of copper to a methionine-rich domain allowing an electron pathway from the substrate to the conventional first electron acceptor, the T1 Cu. In this work, two key amino acid residues in the 1st and 2nd coordination spheres of T1 Cu are mutated in view of tuning their redox potential and investigating their influence on copper-related activity. Evolution of the kinetic parameters after copper addition highlights that both mutations play a key role influencing the enzymatic activity in distinct unexpected ways. These results clearly indicate that the methionine rich domain is not the only actor in the cuprous oxidase activity of CueO-like enzymes

    From Enzyme Stability to Enzymatic Bioelectrode Stabilization Processes

    No full text
    International audienceBioelectrocatalysis using redox enzymes appears as a sustainable way for biosensing, electricity production, or biosynthesis of fine products. Despite advances in the knowledge of parameters that drive the efficiency of enzymatic electrocatalysis, the weak stability of bioelectrodes prevents large scale development of bioelectrocatalysis. In this review, starting from the understanding of the parameters that drive protein instability, we will discuss the main strategies available to improve all enzyme stability, including use of chemicals, protein engineering and immobilization. Considering in a second step the additional requirements for use of redox enzymes, we will evaluate how far these general strategies can be applied to bioelectrocatalysis

    Immobilization of membrane-bounded (S)-mandelate dehydrogenase in sol-gel matrix for electroenzymatic synthesis

    No full text
    International audienceMembrane-bounded (S)-mandelate dehydrogenase has been immobilized on the surface of glassy carbon and carbon felt electrodes by encapsulation in a silica film obtained by sol-gel chemistry. Such bioelectrochemical system has been used for the first time for electroenzymatic conversion of (S)-mandelic acid to phenylglyoxylic acid. Apparent Km in this sol-gel matrix was 0.7 mM in the presence of ferrocenedimethanol, a value in the same order of magnitude as reported previously for vesicles in solution with other electron acceptors, i.e., Fe(CN)(6)(3-) or 2,6-dichloroindophenol. The bioelectrode shows very good operational stability for more than 6 days. This stability was definitively improved by comparison to a bioelectrode prepared by simple adsorption of the proteins on the electrode surface (fast activity decrease during the first 15 h of experiment). Optimal electroenzymatic reaction was achieved at pH 9 and 40 degrees C. Apparent Km of the protein activity was 3 times higher in carbon felt electrode than on glassy carbon surface, possibly because of transport limitations in the porous architecture of the carbon felt A good correlation was found between electrochemical data and chromatographic characterization of the reaction products in the bioelectrochemical reactor

    Local pH Modulation during Electro-Enzymatic O2 Reduction: Characterization of the Influence of Ionic Strength by In Situ Fluorescence Microscopy

    No full text
    International audienceUnderstanding how environmental factors affect the bioelectrode efficiency and stability is of uttermost importance to develop high-performance bioelectrochemical devices. By coupling fluorescence confocal microscopy in situ to electrochemistry, this work focuses on the influence of the ionic strength on electro-enzymatic catalysis. In this context, the 4 e-/ 4 H + reduction of O2 into water by the bilirubin oxidase from Myrothecium verrucaria (MvBOD) is considered as a model. The effects of salt concentration on the enzyme activity and stability were probed by enzymatic assays performed in homogeneous catalysis conditions and monitored by UV-vis absorption spectroscopy. They were also investigated in heterogeneous catalysis conditions by electrochemical measurements with MvBOD immobilized at a graphite microelectrode. We demonstrate that the catalytic activity and stability of the enzyme both in solution and in the immobilized state at the bioelectrode were conserved with an electrolyte concentration of up to 0.5 M, both in a buffered and a non-buffered electrolyte. Relying on this, we used fluorescence confocal laser scanning microscopy coupled in situ to electrochemistry to explore the local pH of the electrolyte at the vicinity of the electrode surface at various ionic strengths and for several overpotentials. 3D proton depletion profiles generated by the interfacial electroenzymatic reaction were recorded in the presence of a pH sensitive fluorophore. These concentration profiles were shown to contract with increasing ionic strength, thus highlighting the need for a minimal electrolyte concentration to ensure availability of charged substrates at the electrode surface during electro-enzymatic experiments
    corecore