59 research outputs found

    Measurement of forward charged hadron flow harmonics in peripheral PbPb collisions at √sNN = 5.02 TeV with the LHCb detector

    Get PDF
    Flow harmonic coefficients, v n , which are the key to studying the hydrodynamics of the quark-gluon plasma (QGP) created in heavy-ion collisions, have been measured in various collision systems and kinematic regions and using various particle species. The study of flow harmonics in a wide pseudorapidity range is particularly valuable to understand the temperature dependence of the shear viscosity to entropy density ratio of the QGP. This paper presents the first LHCb results of the second- and the third-order flow harmonic coefficients of charged hadrons as a function of transverse momentum in the forward region, corresponding to pseudorapidities between 2.0 and 4.9, using the data collected from PbPb collisions in 2018 at a center-of-mass energy of 5.02 TeV . The coefficients measured using the two-particle angular correlation analysis method are smaller than the central-pseudorapidity measurements at ALICE and ATLAS from the same collision system but share similar features

    Helium identification with LHCb

    Get PDF
    The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pp collision data at √(s) = 13 TeV recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5 fb-1. A total of around 105 helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50% with a corresponding background rejection rate of up to O(10^12). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei

    Curvature-bias corrections using a pseudomass method

    Get PDF
    Momentum measurements for very high momentum charged particles, such as muons from electroweak vector boson decays, are particularly susceptible to charge-dependent curvature biases that arise from misalignments of tracking detectors. Low momentum charged particles used in alignment procedures have limited sensitivity to coherent displacements of such detectors, and therefore are unable to fully constrain these misalignments to the precision necessary for studies of electroweak physics. Additional approaches are therefore required to understand and correct for these effects. In this paper the curvature biases present at the LHCb detector are studied using the pseudomass method in proton-proton collision data recorded at centre of mass energy √(s)=13 TeV during 2016, 2017 and 2018. The biases are determined using Z→μ + μ - decays in intervals defined by the data-taking period, magnet polarity and muon direction. Correcting for these biases, which are typically at the 10-4 GeV-1 level, improves the Z→μ + μ - mass resolution by roughly 18% and eliminates several pathological trends in the kinematic-dependence of the mean dimuon invariant mass

    Swiss deep drilling campaign 2019–2022: Geological overview and rock properties with focus on porosity and pore-space architecture

    Get PDF
    A recently completed deep drilling campaign, comprising 9 deep boreholes penetrating the Mesozoic sedimentary sequence of northern Switzerland, yielded >6 km of drillcore. One of the main objectives was to characterise the low-permeability sequence with the lower Jurassic Opalinus Clay in its centre, motivated by the site selection for a deep geological repository for radioactive waste. In this context, the chemical and isotopic composition of the porewater, as well as the mineralogical and petrophysical properties of the rocks, were among the main study targets. In this paper, the main objective was the characterisation of the lithologically diverse Jurassic rock sequence with focus on mineralogy, porosity and pore-space architecture. Given the large amount of data, a well constrained relationship between clay content (relating to fine-grained sheet-silicate minerals) and porosity could be established. Porosity increases with clay content along a concave curve, but in detail minor formation-specific differences of the positions relative to the best-fit curve were identified. These are attributed to the highly variable deposition rates that resulted in different times available for early diagenesis to alter the rock fabric by mineral dissolution and cementation, thereby affecting the compaction behaviour. Pore-size distributions were obtained from N2 ad-/desorption isotherms. A distinct peak at a radius of 3 nm can be clearly correlated with clay minerals, whereas limestones are dominated by pore sizes in the range of 40–100 nm, and marls show intermediate distributions. A conceptual framework is proposed distinguishing a nanometric porosity that is proportional to the clay content and a contribution of larger pores that are related to the geometric incompatibility between platy clay minerals and isometric calcite or quartz. The contribution of these larger pore is thought to explain the curvature of the clay content-porosity relationship and the more limited compaction of the clay in pressure shadows adjacent to the larger grains. A number of outliers towards high porosity at a given clay content were identified in oolites (most strongly in Fe-rich oolites), sandstones and a unit containing coral-reef material. All these units have in common the presence of competent calcite or quartz grains at the time of deposition, leading to grain-supported fabrics and therefore to a more limited compaction in the interstitial pore space

    Connecting the Molecular Structure of Cutin to Ultrastructure and Physical Properties of the Cuticle in Petals of Arabidopsis.

    No full text
    The plant cuticle is laid down at the cell wall surface of epidermal cells in a wide variety of structures, but the functional significance of this architectural diversity is not yet understood. Here, the structure-function relationship of the petal cuticle of Arabidopsis (Arabidopsis thaliana) was investigated. Applying Fourier transform infrared microspectroscopy, the cutin mutants long-chain acyl-coenzyme A synthetase2 (lacs2), permeable cuticle1 (pec1), cyp77a6, glycerol-3-phosphate acyltransferase6 (gpat6), and defective in cuticular ridges (dcr) were grouped in three separate classes based on quantitative differences in the ν(C=O) and ν(C-H) band vibrations. These were associated mainly with the quantity of 10,16-dihydroxy hexadecanoic acid, a monomer of the cuticle polyester, cutin. These spectral features were linked to three different types of cuticle organization: a normal cuticle with nanoridges (lacs2 and pec1 mutants); a broad translucent cuticle (cyp77a6 and dcr mutants); and an electron-opaque multilayered cuticle (gpat6 mutant). The latter two types did not have typical nanoridges. Transmission electron microscopy revealed considerable variations in cuticle thickness in the dcr mutant. Different double mutant combinations showed that a low amount of C16 monomers in cutin leads to the appearance of an electron-translucent layer adjacent to the cuticle proper, which is independent of DCR action. We concluded that DCR is not only essential for incorporating 10,16-dihydroxy C16:0 into cutin but also plays a crucial role in the organization of the cuticle, independent of cutin composition. Further characterization of the mutant petals suggested that nanoridge formation and conical cell shape may contribute to the reduction of physical adhesion forces between petals and other floral organs during floral development
    corecore