5,632 research outputs found

    Analysis of Accordion DNA Stretching Revealed by The Gold Cluster Ruler

    Full text link
    A promising new method for measuring intramolecular distances in solution uses small-angle X-ray scattering interference between gold nanocrystal labels (Mathew-Fenn et al, Science, 322, 446 (2008)). When applied to double stranded DNA, it revealed that the DNA length fluctuations are strikingly strong and correlated over at least 80 base pair steps. In other words, the DNA behaves as accordion bellows, with distant fragments stretching and shrinking concertedly. This hypothesis, however, disagrees with earlier experimental and computational observations. This Letter shows that the discrepancy can be rationalized by taking into account the cluster exclusion volume and assuming a moderate long-range repulsion between them. The long-range interaction can originate from an ion exclusion effect and cluster polarization in close proximity to the DNA surface.Comment: 9 pages, 4 figures, to appear in Phys. Rev.

    Endotaxial Si nanolines in Si(001):H

    Full text link
    We present a detailed study of the structural and electronic properties of a self-assembled silicon nanoline embedded in the H-terminated silicon (001) surface, known as the Haiku stripe. The nanoline is a perfectly straight and defect free endotaxial structure of huge aspect ratio; it can grow micrometre long at a constant width of exactly four Si dimers (1.54nm). Another remarkable property is its capacity to be exposed to air without suffering any degradation. The nanoline grows independently of any step edges at tunable densities, from isolated nanolines to a dense array of nanolines. In addition to these unique structural characteristics, scanning tunnelling microscopy and density functional theory reveal a one-dimensional state confined along the Haiku core. This nanoline is a promising candidate for the long sought after electronic solid-state one-dimensional model system to explore the fascinating quantum properties emerging in such reduced dimensionality.Comment: 8 pages, 6 figure

    Characteristic Energy of the Coulomb Interactions and the Pileup of States

    Full text link
    Tunneling data on La1.28Sr1.72Mn2O7\mathrm{La_{1.28}Sr_{1.72}Mn_2O_7} crystals confirm Coulomb interaction effects through the E\sqrt{\mathrm{E}} dependence of the density of states. Importantly, the data and analysis at high energy, E, show a pileup of states: most of the states removed from near the Fermi level are found between ~40 and 130 meV, from which we infer the possibility of universal behavior. The agreement of our tunneling data with recent photoemission results further confirms our analysis.Comment: 4 pages, 4 figures, submitted to PR

    One dimensional Si-in-Si(001) template for single-atom wire growth

    Full text link
    Single atom metallic wires of arbitrary length are of immense technological and scientific interest. We describe a novel silicon-only template enabling the self-organised growth of isolated micrometer long surface and subsurface single-atom chains. It consists of a one dimensional, defect-free reconstruction - the Haiku core, here revealed for the first time in details - self-assembled on hydrogenated Si(001) terraces, independent of any step edges. We discuss the potential of this Si-in-Si template as an appealing alternative to vicinal surfaces for nanoscale patterning.Comment: 3 pages, 2 figure

    A Quantum Mechanical Model of the Reissner-Nordstrom Black Hole

    Get PDF
    We consider a Hamiltonian quantum theory of spherically symmetric, asymptotically flat electrovacuum spacetimes. The physical phase space of such spacetimes is spanned by the mass and the charge parameters MM and QQ of the Reissner-Nordstr\"{o}m black hole, together with the corresponding canonical momenta. In this four-dimensional phase space, we perform a canonical transformation such that the resulting configuration variables describe the dynamical properties of Reissner-Nordstr\"{o}m black holes in a natural manner. The classical Hamiltonian written in terms of these variables and their conjugate momenta is replaced by the corresponding self-adjoint Hamiltonian operator, and an eigenvalue equation for the ADM mass of the hole, from the point of view of a distant observer at rest, is obtained. Our eigenvalue equation implies that the ADM mass and the electric charge spectra of the hole are discrete, and the mass spectrum is bounded below. Moreover, the spectrum of the quantity M2−Q2M^2-Q^2 is strictly positive when an appropriate self-adjoint extension is chosen. The WKB analysis yields the result that the large eigenvalues of the quantity M2−Q2\sqrt{M^2-Q^2} are of the form 2n\sqrt{2n}, where nn is an integer. It turns out that this result is closely related to Bekenstein's proposal on the discrete horizon area spectrum of black holes.Comment: 37 pages, Plain TeX, no figure

    Lunar radiation environment and space weathering from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER)

    Get PDF
    [1] The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) measures linear energy transfer by Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs) on the Lunar Reconnaissance Orbiter (LRO) Mission in a circular, polar lunar orbit. GCR fluxes remain at the highest levels ever observed during the space age. One of the largest SEP events observed by CRaTER during the LRO mission occurred on June 7, 2011. We compare model predictions by the Earth-Moon-Mars Radiation Environment Module (EMMREM) for both dose rates from GCRs and SEPs during this event with results from CRaTER. We find agreement between these models and the CRaTER dose rates, which together demonstrate the accuracy of EMMREM, and its suitability for a real-time space weather system. We utilize CRaTER to test forecasts made by the Relativistic Electron Alert System for Exploration (REleASE), which successfully predicts the June 7th event. At the maximum CRaTER-observed GCR dose rate (∼11.7 cGy/yr where Gy is a unit indicating energy deposition per unit mass, 1 Gy = 1 J/kg), GCRs deposit ∼88 eV/molecule in water over 4 billion years, causing significant change in molecular composition and physical structure (e.g., density, color, crystallinity) of water ice, loss of molecular hydrogen, and production of more complex molecules linking carbon and other elements in the irradiated ice. This shows that space weathering by GCRs may be extremely important for chemical evolution of ice on the Moon. Thus, we show comprehensive observations from the CRaTER instrument on the Lunar Reconnaissance Orbiter that characterizes the radiation environment and space weathering on the Moon

    Macroscopic detection of the strong stochasticity threshold in Fermi-Pasta-Ulam chains of oscillators

    Full text link
    The largest Lyapunov exponent of a system composed by a heavy impurity embedded in a chain of anharmonic nearest-neighbor Fermi-Pasta-Ulam oscillators is numerically computed for various values of the impurity mass MM. A crossover between weak and strong chaos is obtained at the same value ϵT\epsilon_{_T} of the energy density ϵ\epsilon (energy per degree of freedom) for all the considered values of the impurity mass MM. The threshold \epsi lon_{_T} coincides with the value of the energy density ϵ\epsilon at which a change of scaling of the relaxation time of the momentum autocorrelation function of the impurity ocurrs and that was obtained in a previous work ~[M. Romero-Bastida and E. Braun, Phys. Rev. E {\bf65}, 036228 (2002)]. The complete Lyapunov spectrum does not depend significantly on the impurity mass MM. These results suggest that the impurity does not contribute significantly to the dynamical instability (chaos) of the chain and can be considered as a probe for the dynamics of the system to which the impurity is coupled. Finally, it is shown that the Kolmogorov-Sinai entropy of the chain has a crossover from weak to strong chaos at the same value of the energy density that the crossover value ϵT\epsilon_{_T} of largest Lyapunov exponent. Implications of this result are discussed.Comment: 6 pages, 5 figures, revtex4 styl

    On the correct formula for the lifetime broadened superconducting density of states

    Full text link
    We argue that the well known Dynes formula [Dynes R C {\it et al.} 1978 {\it Phys. Rev. Lett.} {\bf 41} 1509] for the superconducting quasiparticle density of states, which tries to incorporate the lifetime broadening in an approximate way, cannot be justified microscopically for conventional superconductors. Instead, we propose a new simple formula in which the energy gap has a finite imaginary part −Δ2-\Delta_2 and the quasiparticle energy is real. We prove that in the quasiparticle approximation 2Δ2\Delta_2 gives the quasiparticle decay rate at the gap edge for conventional superconductors. This conclusion does not depend on the nature of interactions that cause the quasiparticle decay. The new formula is tested on the case of a strong coupling superconductor Pb0.9_{0.9}Bi0.1_{0.1} and an excellent agreement with theoretical predictions is obtained. While both the Dynes formula and the one proposed in this work give good fits and fit parameters for Pb0.9_{0.9}Bi0.1_{0.1}, only the latter formula can be justified microscopically.Comment: 6 pages, 4 figure
    • …
    corecore