research

Macroscopic detection of the strong stochasticity threshold in Fermi-Pasta-Ulam chains of oscillators

Abstract

The largest Lyapunov exponent of a system composed by a heavy impurity embedded in a chain of anharmonic nearest-neighbor Fermi-Pasta-Ulam oscillators is numerically computed for various values of the impurity mass MM. A crossover between weak and strong chaos is obtained at the same value ϵT\epsilon_{_T} of the energy density ϵ\epsilon (energy per degree of freedom) for all the considered values of the impurity mass MM. The threshold \epsi lon_{_T} coincides with the value of the energy density ϵ\epsilon at which a change of scaling of the relaxation time of the momentum autocorrelation function of the impurity ocurrs and that was obtained in a previous work ~[M. Romero-Bastida and E. Braun, Phys. Rev. E {\bf65}, 036228 (2002)]. The complete Lyapunov spectrum does not depend significantly on the impurity mass MM. These results suggest that the impurity does not contribute significantly to the dynamical instability (chaos) of the chain and can be considered as a probe for the dynamics of the system to which the impurity is coupled. Finally, it is shown that the Kolmogorov-Sinai entropy of the chain has a crossover from weak to strong chaos at the same value of the energy density that the crossover value ϵT\epsilon_{_T} of largest Lyapunov exponent. Implications of this result are discussed.Comment: 6 pages, 5 figures, revtex4 styl

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020