14 research outputs found

    Identification of promoter elements in the Dolichospermum circinale AWQC131C saxitoxin gene cluster and the experimental analysis of their use for heterologous expression

    Get PDF
    Background Dolichospermum circinale is a filamentous bloom-forming cyanobacterium responsible for biosynthesis of the paralytic shellfish toxins (PST), including saxitoxin. PSTs are neurotoxins and in their purified form are important analytical standards for monitoring the quality of water and seafood and biomedical research tools for studying neuronal sodium channels. More recently, PSTs have been recognised for their utility as local anaesthetics. Characterisation of the transcriptional elements within the saxitoxin (sxt) biosynthetic gene cluster (BGC) is a first step towards accessing these molecules for biotechnology. Results In D. circinale AWQC131C the sxt BGC is transcribed from two bidirectional promoter regions encoding five individual promoters. These promoters were identified experimentally using 5â€Č RACE and their activity assessed via coupling to a lux reporter system in E. coli and Synechocystis sp. PCC 6803. Transcription of the predicted drug/metabolite transporter (DMT) encoded by sxtPER was found to initiate from two promoters, PsxtPER1 and PsxtPER2. In E. coli, strong expression of lux from PsxtP, PsxtD and PsxtPER1 was observed while expression from Porf24 and PsxtPER2 was remarkably weaker. In contrast, heterologous expression in Synechocystis sp. PCC 6803 showed that expression of lux from PsxtP, PsxtPER1, and Porf24 promoters was statistically higher compared to the non-promoter control, while PsxtD showed poor activity under the described conditions. Conclusions Both of the heterologous hosts investigated in this study exhibited high expression levels from three of the five sxt promoters. These results indicate that the majority of the native sxt promoters appear active in different heterologous hosts, simplifying initial cloning efforts. Therefore, heterologous expression of the sxt BGC in either E. coli or Synechocystis could be a viable first option for producing PSTs for industrial or biomedical purposes

    PpiA, a Surface PPIase of the Cyclophilin Family in Lactococcus lactis

    Get PDF
    Background: Protein folding in the envelope is a crucial limiting step of protein export and secretion. In order to better understand this process in Lactococcus lactis, a lactic acid bacterium, genes encoding putative exported folding factors like Peptidyl Prolyl Isomerases (PPIases) were searched for in lactococcal genomes. Results: In L. lactis, a new putative membrane PPIase of the cyclophilin subfamily, PpiA, was identified and characterized. ppiA gene was found to be constitutively expressed under normal and stress (heat shock, H2O2) conditions. Under normal conditions, PpiA protein was synthesized and released from intact cells by an exogenously added protease, showing that it was exposed at the cell surface. No obvious phenotype could be associated to a ppiA mutant strain under several laboratory conditions including stress conditions, except a very low sensitivity to H2O2. Induction of a ppiA copy provided in trans had no effect i) on the thermosensitivity of an mutant strain deficient for the lactococcal surface protease HtrA and ii) on the secretion and stability on four exported proteins (a highly degraded hybrid protein and three heterologous secreted proteins) in an otherwise wild-type strain background. However, a recombinant soluble form of PpiA that had been produced and secreted in L. lactis and purified from a culture supernatant displayed both PPIase and chaperone activities. Conclusions: Although L. lactis PpiA, a protein produced and exposed at the cell surface under normal conditions, displaye

    The Genome Sequence of the Cyanobacterium Oscillatoria sp. PCC 6506 Reveals Several Gene Clusters Responsible for the Biosynthesis of Toxins and Secondary Metabolites▿

    No full text
    We report a draft sequence of the genome of Oscillatoria sp. PCC 6506, a cyanobacterium that produces anatoxin-a and homoanatoxin-a, two neurotoxins, and cylindrospermopsin, a cytotoxin. Beside the clusters of genes responsible for the biosynthesis of these toxins, we have found other clusters of genes likely involved in the biosynthesis of not-yet-identified secondary metabolites

    Biosynthesis of Cylindrospermopsin and 7-Epicylindrospermopsin in Oscillatoria sp. Strain PCC 6506: Identification of the cyr Gene Cluster and Toxin Analysis ▿

    No full text
    Cylindrospermopsin is a cytotoxin produced by Cylindrospermopsis raciborskii and other cyanobacteria that has been implicated in human intoxications. We report here the complete sequence of the gene cluster responsible for the biosynthesis of this toxin in Oscillatoria sp. strain PCC 6506. This cluster of genes was found to be homologous with that of C. raciborskii but with a different gene organization. Using an enzyme-linked immunosorbent assay and an optimized liquid chromatography analytical method coupled to tandem mass spectrometry, we detected 7-epicylindrospermopsin, cylindrospermopsin, and 7-deoxycylindrospermopsin in the culture medium of axenic Oscillatoria PCC 6506 at the following relative concentrations: 68.6%, 30.2%, and 1.2%, respectively. We measured the intracellular and extracellular concentrations, per mg of dried cells of Oscillatoria PCC 6506, of 7-epicylindrospermopsin (0.18 Όg/mg and 0.29 Όg/mg, respectively) and cylindrospermopsin (0.10 Όg/mg and 0.11 Όg/mg, respectively). We showed that these two toxins accumulated in the culture medium of Oscillatoria PCC 6506 but that the ratio (2.5 ± 0.3) was constant with 7-epicylindrospermopsin being the major metabolite. We also determined the concentrations of these toxins in culture media of other Oscillatoria strains, PCC 6407, PCC 6602, PCC 7926, and PCC 10702, and found that, except for PCC 6602, they all produced 7-epicylindrospermopsin and cylindrospermopsin, with the former being the major toxin, except for PCC 7926, which produced very little 7-epicylindrospermopsin. All the cylindrospermopsin producers studied gave a PCR product using specific primers for the amplification of the cyrJ gene from genomic DNA

    Directing the Heterologous Production of Specific Cyanobacterial Toxin Variants

    No full text
    Microcystins are globally the most commonly occurring freshwater cyanotoxins, causing acute poisoning and chronically inducing hepatocellular carcinoma. However, the detection and toxicological study of microcystins is hampered by the limited availability and high cost of pure toxin standards. Biosynthesis of microcystin variants in a fast-growing heterologous host offers a promising method of achieving reliable and economically viable alternative to isolating toxin from slow-growing cyanobacterial cultures. Here, we report the heterologous expression of recombinant microcystin synthetases in <i>Escherichia coli</i> to produce [d-Asp<sup>3</sup>]­microcystin-LR and microcystin-LR. We assembled a 55 kb hybrid polyketide synthase/nonribosomal peptide synthetase gene cluster from <i>Microcystis aeruginosa</i> PCC 7806 using Red/ET recombineering and replaced the native promoters with an inducible P<i>tet</i><sub><i>O</i></sub> promoter to yield microcystin titers superior to <i>M. aeruginosa</i>. The expression platform described herein can be tailored to heterologously produce a wide variety of microcystin variants, and potentially other cyanobacterial natural products of commercial relevance

    Adaptive differentiation of Plasmodium falciparum populations inferred from single-nucleotide polymorphisms (SNPs) conferring drug resistance and from neutral SNPs.

    No full text
    International audienceBACKGROUND: Theoretical and experimental data support the geographic differentiation strategy as a valuable tool for detecting loci under selection. In the context of Plasmodium falciparum malaria, few populations have been studied, with limited genomic coverage. METHODS: We examined geographic differentiation in P. falciparum populations on the basis of 12 single-nucleotide polymorphisms (SNPs) in 4 genes encoding drug resistance determinants, 5 SNPs in 2 genes encoding antigens, and a set of 17 putatively neutral SNPs dispersed on 13 chromosomes. We sampled 326 parasite isolates representing 7 P. falciparum populations from regions with varied levels of malaria transmission (Gabon, Kenya, Madagascar, Mali, Mayotte, Haiti, and the Philippines). RESULTS: Frequencies of drug resistance alleles varied considerably among populations (mean F(ST), 0.52). In contrast, allele frequencies varied significantly less for antigenic and neutral SNPs (mean F(ST), 0.16 and 0.24, respectively). This contrasting pattern was more pronounced when only the African populations were considered. Signature of selection was detected for most of the resistant SNPs but not for the antigenic SNPs. CONCLUSION: These data further validate the utility of geographic differentiation for identifying loci under strong positive selection, such as drug resistance loci. This study also provides frequencies of molecular makers of resistance in some overlooked populations

    PpiA peptides released by shaving treatment of lactococcal cells.

    No full text
    <p>Six peptides identified by LCMS/MS were found to match with the same protein: its accession number, the gene name and protein function, <i>E</i>-values (for the whole protein and for each peptide) and coverage are indicated. In the first peptide, the amino acids in bold are conserved between <i>L. lactis</i> PpiA and hCyp18, and in the latter, they belong to the active center (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0033516#pone-0033516-g001" target="_blank">Figure 1</a>).</p
    corecore