853 research outputs found

    Invariant measures for Burgers equation with stochastic forcing

    Full text link
    In this paper we study the following Burgers equation du/dt + d/dx (u^2/2) = epsilon d^2u/dx^2 + f(x,t) where f(x,t)=dF/dx(x,t) is a random forcing function, which is periodic in x and white noise in t. We prove the existence and uniqueness of an invariant measure by establishing a ``one force, one solution'' principle, namely that for almost every realization of the force, there is a unique distinguished solution that exists for the time interval (-infty, +infty) and this solution attracts all other solutions with the same forcing. This is done by studying the so-called one-sided minimizers. We also give a detailed description of the structure and regularity properties for the stationary solutions. In particular, we prove, under some non-degeneracy conditions on the forcing, that almost surely there is a unique main shock and a unique global minimizer for the stationary solutions. Furthermore the global minimizer is a hyperbolic trajectory of the underlying system of characteristics.Comment: 84 pages, published version, abstract added in migratio

    Pseudo-Random Streams for Distributed and Parallel Stochastic Simulations on GP-GPU

    Get PDF
    International audienceRandom number generation is a key element of stochastic simulations. It has been widely studied for sequential applications purposes, enabling us to reliably use pseudo-random numbers in this case. Unfortunately, we cannot be so enthusiastic when dealing with parallel stochastic simulations. Many applications still neglect random stream parallelization, leading to potentially biased results. In particular parallel execution platforms, such as Graphics Processing Units (GPUs), add their constraints to those of Pseudo-Random Number Generators (PRNGs) used in parallel. This results in a situation where potential biases can be combined with performance drops when parallelization of random streams has not been carried out rigorously. Here, we propose criteria guiding the design of good GPU-enabled PRNGs. We enhance our comments with a study of the techniques aiming to parallelize random streams correctly, in the context of GPU-enabled stochastic simulations

    A Contour Method on Cayley tree

    Full text link
    We consider a finite range lattice models on Cayley tree with two basic properties: the existence of only a finite number of ground states and with Peierls type condition. We define notion of a contour for the model on the Cayley tree. By a contour argument we show the existence of ss different (where ss is the number of ground states) Gibbs measures.Comment: 12 page

    Rigorous Proof of a Liquid-Vapor Phase Transition in a Continuum Particle System

    Full text link
    We consider particles in Rd,d2{\Bbb R}^d, d \geq 2, interacting via attractive pair and repulsive four-body potentials of the Kac type. Perturbing about mean field theory, valid when the interaction range becomes infinite, we prove rigorously the existence of a liquid-gas phase transition when the interaction range is finite but long compared to the interparticle spacing.Comment: 11 pages, in ReVTeX, e-mail addresses: [email protected], [email protected], [email protected]

    Ordering and Demixing Transitions in Multicomponent Widom-Rowlinson Models

    Full text link
    We use Monte Carlo techniques and analytical methods to study the phase diagram of multicomponent Widom-Rowlinson models on a square lattice: there are M species all with the same fugacity z and a nearest neighbor hard core exclusion between unlike particles. Simulations show that for M between two and six there is a direct transition from the gas phase at z < z_d (M) to a demixed phase consisting mostly of one species at z > z_d (M) while for M \geq 7 there is an intermediate ``crystal phase'' for z lying between z_c(M) and z_d(M). In this phase, which is driven by entropy, particles, independent of species, preferentially occupy one of the sublattices, i.e. spatial symmetry but not particle symmetry is broken. The transition at z_d(M) appears to be first order for M \geq 5 putting it in the Potts model universality class. For large M the transition between the crystalline and demixed phase at z_d(M) can be proven to be first order with z_d(M) \sim M-2 + 1/M + ..., while z_c(M) is argued to behave as \mu_{cr}/M, with \mu_{cr} the value of the fugacity at which the one component hard square lattice gas has a transition, and to be always of the Ising type. Explicit calculations for the Bethe lattice with the coordination number q=4 give results similar to those for the square lattice except that the transition at z_d(M) becomes first order at M>2. This happens for all q, consistent with the model being in the Potts universality class.Comment: 26 pages, 15 postscript figure

    Regularity Properties and Pathologies of Position-Space Renormalization-Group Transformations

    Get PDF
    We reconsider the conceptual foundations of the renormalization-group (RG) formalism, and prove some rigorous theorems on the regularity properties and possible pathologies of the RG map. Regarding regularity, we show that the RG map, defined on a suitable space of interactions (= formal Hamiltonians), is always single-valued and Lipschitz continuous on its domain of definition. This rules out a recently proposed scenario for the RG description of first-order phase transitions. On the pathological side, we make rigorous some arguments of Griffiths, Pearce and Israel, and prove in several cases that the renormalized measure is not a Gibbs measure for any reasonable interaction. This means that the RG map is ill-defined, and that the conventional RG description of first-order phase transitions is not universally valid. For decimation or Kadanoff transformations applied to the Ising model in dimension d3d \ge 3, these pathologies occur in a full neighborhood {β>β0,h<ϵ(β)}\{ \beta > \beta_0 ,\, |h| < \epsilon(\beta) \} of the low-temperature part of the first-order phase-transition surface. For block-averaging transformations applied to the Ising model in dimension d2d \ge 2, the pathologies occur at low temperatures for arbitrary magnetic-field strength. Pathologies may also occur in the critical region for Ising models in dimension d4d \ge 4. We discuss in detail the distinction between Gibbsian and non-Gibbsian measures, and give a rather complete catalogue of the known examples. Finally, we discuss the heuristic and numerical evidence on RG pathologies in the light of our rigorous theorems.Comment: 273 pages including 14 figures, Postscript, See also ftp.scri.fsu.edu:hep-lat/papers/9210/9210032.ps.

    Big Cwatsets and Hamming Code

    Get PDF
    In contrast to Lagrange\u27s Theorem in Finite Group Theory, we show that the ratio of the largest proper cwatset of degree d to the size of binary d-space approaches 1 as d approaches infinity. We show how to explicitly construct large cwatsets as cosets of Hamming Codes, and discuss many open questions that arise

    Les ancêtres préhistoriques des Animaux domestiques peints et gravés dans la grotte de Lascaux

    Get PDF
    Mazel M. Les ancêtres préhistoriques des Animaux domestiques peints et gravés dans la grotte de Lascaux. In: Bulletin de l'Académie Vétérinaire de France tome 104 n°1, 1951. pp. 73-80
    corecore