853 research outputs found
Invariant measures for Burgers equation with stochastic forcing
In this paper we study the following Burgers equation
du/dt + d/dx (u^2/2) = epsilon d^2u/dx^2 + f(x,t)
where f(x,t)=dF/dx(x,t) is a random forcing function, which is periodic in x
and white noise in t. We prove the existence and uniqueness of an invariant
measure by establishing a ``one force, one solution'' principle, namely that
for almost every realization of the force, there is a unique distinguished
solution that exists for the time interval (-infty, +infty) and this solution
attracts all other solutions with the same forcing. This is done by studying
the so-called one-sided minimizers. We also give a detailed description of the
structure and regularity properties for the stationary solutions. In
particular, we prove, under some non-degeneracy conditions on the forcing, that
almost surely there is a unique main shock and a unique global minimizer for
the stationary solutions. Furthermore the global minimizer is a hyperbolic
trajectory of the underlying system of characteristics.Comment: 84 pages, published version, abstract added in migratio
Pseudo-Random Streams for Distributed and Parallel Stochastic Simulations on GP-GPU
International audienceRandom number generation is a key element of stochastic simulations. It has been widely studied for sequential applications purposes, enabling us to reliably use pseudo-random numbers in this case. Unfortunately, we cannot be so enthusiastic when dealing with parallel stochastic simulations. Many applications still neglect random stream parallelization, leading to potentially biased results. In particular parallel execution platforms, such as Graphics Processing Units (GPUs), add their constraints to those of Pseudo-Random Number Generators (PRNGs) used in parallel. This results in a situation where potential biases can be combined with performance drops when parallelization of random streams has not been carried out rigorously. Here, we propose criteria guiding the design of good GPU-enabled PRNGs. We enhance our comments with a study of the techniques aiming to parallelize random streams correctly, in the context of GPU-enabled stochastic simulations
A Contour Method on Cayley tree
We consider a finite range lattice models on Cayley tree with two basic
properties: the existence of only a finite number of ground states and with
Peierls type condition. We define notion of a contour for the model on the
Cayley tree. By a contour argument we show the existence of different
(where is the number of ground states) Gibbs measures.Comment: 12 page
Rigorous Proof of a Liquid-Vapor Phase Transition in a Continuum Particle System
We consider particles in , interacting via attractive
pair and repulsive four-body potentials of the Kac type. Perturbing about mean
field theory, valid when the interaction range becomes infinite, we prove
rigorously the existence of a liquid-gas phase transition when the interaction
range is finite but long compared to the interparticle spacing.Comment: 11 pages, in ReVTeX, e-mail addresses: [email protected],
[email protected], [email protected]
Recommended from our members
The influence of the accessory genome on bacterial pathogen evolution
Bacterial pathogens exhibit significant variation in their genomic content of virulence factors. This reflects the abundance of strategies pathogens evolved to infect host organisms by suppressing host immunity. Molecular arms-races have been a strong driving force for the evolution of pathogenicity, with pathogens often encoding overlapping or redundant functions, such as type III protein secretion effectors and hosts encoding ever more sophisticated immune systems. The pathogens’ frequent exposure to other microbes, either in their host or in the environment, provides opportunities for the acquisition or interchange of mobile genetic elements. These DNA elements accessorise the core genome and can play major roles in shaping genome structure and altering the complement of virulence factors. Here, we review the different mobile genetic elements focusing on the more recent discoveries and highlighting their role in shaping bacterial pathogen evolution
Ordering and Demixing Transitions in Multicomponent Widom-Rowlinson Models
We use Monte Carlo techniques and analytical methods to study the phase
diagram of multicomponent Widom-Rowlinson models on a square lattice: there are
M species all with the same fugacity z and a nearest neighbor hard core
exclusion between unlike particles. Simulations show that for M between two and
six there is a direct transition from the gas phase at z < z_d (M) to a demixed
phase consisting mostly of one species at z > z_d (M) while for M \geq 7 there
is an intermediate ``crystal phase'' for z lying between z_c(M) and z_d(M). In
this phase, which is driven by entropy, particles, independent of species,
preferentially occupy one of the sublattices, i.e. spatial symmetry but not
particle symmetry is broken. The transition at z_d(M) appears to be first order
for M \geq 5 putting it in the Potts model universality class. For large M the
transition between the crystalline and demixed phase at z_d(M) can be proven to
be first order with z_d(M) \sim M-2 + 1/M + ..., while z_c(M) is argued to
behave as \mu_{cr}/M, with \mu_{cr} the value of the fugacity at which the one
component hard square lattice gas has a transition, and to be always of the
Ising type. Explicit calculations for the Bethe lattice with the coordination
number q=4 give results similar to those for the square lattice except that the
transition at z_d(M) becomes first order at M>2. This happens for all q,
consistent with the model being in the Potts universality class.Comment: 26 pages, 15 postscript figure
Regularity Properties and Pathologies of Position-Space Renormalization-Group Transformations
We reconsider the conceptual foundations of the renormalization-group (RG)
formalism, and prove some rigorous theorems on the regularity properties and
possible pathologies of the RG map. Regarding regularity, we show that the RG
map, defined on a suitable space of interactions (= formal Hamiltonians), is
always single-valued and Lipschitz continuous on its domain of definition. This
rules out a recently proposed scenario for the RG description of first-order
phase transitions. On the pathological side, we make rigorous some arguments of
Griffiths, Pearce and Israel, and prove in several cases that the renormalized
measure is not a Gibbs measure for any reasonable interaction. This means that
the RG map is ill-defined, and that the conventional RG description of
first-order phase transitions is not universally valid. For decimation or
Kadanoff transformations applied to the Ising model in dimension ,
these pathologies occur in a full neighborhood of the low-temperature part of the first-order
phase-transition surface. For block-averaging transformations applied to the
Ising model in dimension , the pathologies occur at low temperatures
for arbitrary magnetic-field strength. Pathologies may also occur in the
critical region for Ising models in dimension . We discuss in detail
the distinction between Gibbsian and non-Gibbsian measures, and give a rather
complete catalogue of the known examples. Finally, we discuss the heuristic and
numerical evidence on RG pathologies in the light of our rigorous theorems.Comment: 273 pages including 14 figures, Postscript, See also
ftp.scri.fsu.edu:hep-lat/papers/9210/9210032.ps.
Big Cwatsets and Hamming Code
In contrast to Lagrange\u27s Theorem in Finite Group Theory, we show that the ratio of the largest proper cwatset of degree d to the size of binary d-space approaches 1 as d approaches infinity. We show how to explicitly construct large cwatsets as cosets of Hamming Codes, and discuss many open questions that arise
Les ancêtres préhistoriques des Animaux domestiques peints et gravés dans la grotte de Lascaux
Mazel M. Les ancêtres préhistoriques des Animaux domestiques peints et gravés dans la grotte de Lascaux. In: Bulletin de l'Académie Vétérinaire de France tome 104 n°1, 1951. pp. 73-80
- …
