65 research outputs found

    Saying Hello World with UML-RSDS - A Solution to the 2011 Instructive Case

    Full text link
    In this paper we apply the UML-RSDS notation and tools to the "Hello World" case studies and explain the underlying development process for this model transformation approach.Comment: In Proceedings TTC 2011, arXiv:1111.440

    Solving the TTC 2011 Model Migration Case with UML-RSDS

    Full text link
    In this paper we apply the UML-RSDS notation and tools to the GMF model migration case study and explain how to use the UML-RSDS tools.Comment: In Proceedings TTC 2011, arXiv:1111.440

    Optical markers of magnetic phase transition in CrSBr

    Full text link
    Here, we investigate the role of the interlayer magnetic ordering of CrSBr in the framework of ab initio\textit{ab initio} calculations and by using optical spectroscopy techniques. These combined studies allow us to unambiguously determine the nature of the optical transitions. In particular, photoreflectance measurements, sensitive to the direct transitions, have been carried out for the first time. We have demonstrated that optically induced band-to-band transitions visible in optical measurement are remarkably well assigned to the band structure by the momentum matrix elements and energy differences for the magnetic ground state (A-AFM). In addition, our study reveals significant differences in electronic properties for two different interlayer magnetic phases. When the magnetic ordering of A-AFM to FM is changed, the crucial modification of the band structure reflected in the direct-to-indirect band gap transition and the significant splitting of the conduction bands along the Γ−Z\Gamma-Z direction are obtained. In addition, Raman measurements demonstrate a splitting between the in-plane modes B2g2B^2_{2g}/B3g2B^2_{3g}, which is temperature dependent and can be assigned to different interlayer magnetic states, corroborated by the DFT+U study. Moreover, the B2g2B^2_{2g} mode has not been experimentally observed before. Finally, our results point out the origin of interlayer magnetism, which can be attributed to electronic rather than structural properties. Our results reveal a new approach for tuning the optical and electronic properties of van der Waals magnets by controlling the interlayer magnetic ordering in adjacent layers.Comment: 33 pages, 15 figure

    Lunar Lander Structural Design Studies at NASA Langley

    Get PDF
    The National Aeronautics and Space Administration is currently developing mission architectures, vehicle concepts and flight hardware to support the planned human return to the Moon. During Phase II of the 2006 Lunar Lander Preparatory Study, a team from the Langley Research Center was tasked with developing and refining two proposed Lander concepts. The Descent-Assisted, Split Habitat Lander concept uses a disposable braking stage to perform the lunar orbit insertion maneuver and most of the descent from lunar orbit to the surface. The second concept, the Cargo Star Horizontal Lander, carries ascent loads along its longitudinal axis, and is then rotated in flight so that its main engines (mounted perpendicular to the vehicle longitudinal axis) are correctly oriented for lunar orbit insertion and a horizontal landing. Both Landers have separate crew transport volumes and habitats for surface operations, and allow placement of large cargo elements very close to the lunar surface. As part of this study, lightweight, efficient structural configurations for these spacecraft were proposed and evaluated. Vehicle structural configurations were first developed, and preliminary structural sizing was then performed using finite element-based methods. Results of selected structural design and trade studies performed during this activity are presented and discussed

    SIMPATIQCO: A server-based software suite which facilitates monitoring the time course of LC-MS performance metrics on orbitrap instruments

    Get PDF
    While the performance of liquid chromatography (LC) and mass spectrometry (MS) instrumentation continues to increase, applications such as analyses of complete or near-complete proteomes and quantitative studies require constant and optimal system performance. For this reason, research laboratories and core facilities alike are recommended to implement quality control (QC) measures as part of their routine workflows. Many laboratories perform sporadic quality control checks. However, successive and systematic longitudinal monitoring of system performance would be facilitated by dedicated automatic or semiautomatic software solutions that aid an effortless analysis and display of QC metrics over time. We present the software package SIMPATIQCO (SIMPle AuTomatIc Quality COntrol) designed for evaluation of data from LTQ Orbitrap, Q-Exactive, LTQ FT, and LTQ instruments. A centralized SIMPATIQCO server can process QC data from multiple instruments. The software calculates QC metrics supervising every step of data acquisition from LC and electrospray to MS. For each QC metric the software learns the range indicating adequate system performance from the uploaded data using robust statistics. Results are stored in a database and can be displayed in a comfortable manner from any computer in the laboratory via a web browser. QC data can be monitored for individual LC runs as well as plotted over time. SIMPATIQCO thus assists the longitudinal monitoring of important QC metrics such as peptide elution times, peak widths, intensities, total ion current (TIC) as well as sensitivity, and overall LC-MS system performance; in this way the software also helps identify potential problems. The SIMPATIQCO software package is available free of charge

    The Mission Accessibility of Near-Earth Asteroids

    Get PDF
    The population of near-Earth asteroids (NEAs) that may be accessible for human space flight missions is defined by the Near-Earth Object Human Space Flight Accessible Targets Study (NHATS). The NHATS is an automated system designed to monitor the accessibility of, and particular mission opportunities offered by, the NEA population. This is analogous to systems that automatically monitor the impact risk posed to Earth by the NEA population. The NHATS system identifies NEAs that are potentially accessible for future round-trip human space flight missions and provides rapid notification to asteroid observers so that crucial follow-up observations can be obtained following discovery of accessible NEAs. The NHATS was developed in 2010 and was automated by early 2012. NHATS data are provided via an interactive web-site, and daily NHATS notification emails are transmitted to a mailing list; both resources are available to the public

    Attitude Control and Stabilization of Spacecraft with a Captured Asteroid

    Get PDF
    National Aeronautics and Space Administration's Asteroid Redirect Mission (ARM) aims to capture a Near Earth Orbit (NEO) asteroid or a piece of a large asteroid and transport it to the Earth{Moon system. In this paper, we provide a detailed analysis of one of the main control challenges for the first ARM mission concept, namely despinning and three-axis stabilizing the asteroid and spacecraft combination after the ARM spacecraft captures the tumbling NEO asteroid. We first show that control laws, which explicitly use the dynamics of the system in their control law equation, encounter a fundamental limitation due to modeling uncertainties. We show that in the presence of large modeling uncertainties, the resultant disturbance torque for such control laws may well exceed the maximum control torque of the conceptual ARM spacecraft. We then numerically compare the performance of three viable control laws: the robust nonlinear tracking control law, the adaptive nonlinear tracking control law, and the simple derivative plus proportional-derivative linear control strategy. We conclude that under very small mod- eling uncertainties, which can be achieved using online system identification, the robust nonlinear tracking control law guarantees exponential convergence to the fuel-optimal reference trajectory and hence consumes the least fuel. On the other hand, in the presence of large modeling uncertainties, measurement errors, and actuator saturations, the best strategy for stabilizing the asteroid and spacecraft combination is to first despin the system using a derivative (rate damping) linear control law and then stabilize the system in the desired orientation using the simple proportional-derivative linear control law. More-over, the fuel consumed by the conceptual ARM spacecraft using these control strategies is upper bounded by 300 kg for the nominal range of NEO asteroid parameters. We conclude this paper with specific design guidelines for the ARM spacecraft for efficiently stabilizing the tumbling NEO asteroid and spacecraft combination

    Missions to Near-Earth Asteroids: Implications for Exploration, Science, Resource Utilization, and Planetary Defense

    Get PDF
    Introduction: In 2009 the Augustine Commission identified near-Earth asteroids (NEAs) as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. NEA Space-Based Survey and Robotic Precursor Missions: The most suitable targets for human missions are NEAs in Earth-like orbits with long synodic periods. However, these mission candidates are often not observable from Earth until the timeframe of their most favorable human mission opportunities, which does not provide an appropriate amount of time for mission development. A space-based survey telescope could more efficiently find these targets in a timely, affordable manner. Such a system is not only able to discover new objects, but also track and characterize objects of interest for human space flight consideration. Those objects with characteristic signatures representative of volatile-rich or metallic materials will be considered as top candidates for further investigation due to their potential for resource utilization and scientific discovery. Once suitable candidates have been identified, precursor spacecraft are required to perform basic reconnaissance of a few NEAs under consideration for the human-led mission. Robotic spacecraft will assess targets for potential hazards that may pose a risk to the deep space transportation vehicle, its deployable assets, and the crew. Additionally, the information obtained about the NEA's basic physical characteristics will be crucial for planning operational activities, designing in-depth scientific/engineering investigations, and identifying sites on the NEA for sample collection. Human Exploration Considerations: These missions would be the first human expeditions to interplanetary bodies beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars, Phobos and Deimos, and other Solar System destinations. Current analyses of operational concepts suggest that stay times of 15 to 30 days may be possible at a NEA with total mission duration limits of 180 days or less. Hence, these missions would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while simultaneously conducting detailed investigations of these primitive objects with instruments and equipment that exceed the mass and power capabilities delivered by robotic spacecraft. All of these activities will be vital for refinement of resource characterization/identification and development of extraction/utilization technologies to be used on airless bodies under low- or micro-gravity conditions. In addition, gaining enhanced understanding of a NEA s geotechnical properties and its gross internal structure will assist the development of hazard mitigation techniques for planetary defense. Conclusions: The scientific, resource utilization, and hazard mitigation benefits, along with the programmatic and operational benefits of a human venture beyond the Earth-Moon system, make a piloted sample return mission to a NEA using NASA s proposed human exploration systems a compelling endeavor

    Human Missions to Near-Earth Asteroids: An Update on NASA's Current Status and Proposed Activities for Small Body Exploration

    Get PDF
    Introduction: Over the past several years, much attention has been focused on the human exploration of near-Earth asteroids (NEAs). Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. Dynamical Assessment: The current near-term NASA human spaceflight capability is in the process of being defined while the Multi-Purpose Crew Vehicle (MPCV) and Space Launch System (SLS) are still in development. Hence, those NEAs in more accessible heliocentric orbits relative to a minimal interplanetary exploration capability will be considered for the first missions. If total mission durations for the first voyages to NEAs are to be kept to less than one year, with minimal velocity changes, then NEA rendezvous missions ideally will take place within 0.1 AU of Earth (approx about 5 million km or 37 lunar distances). Human Exploration Considerations: These missions would be the first human expeditions to inter-planetary bodies beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars, Phobos and Deimos, and other Solar System destinations. Missions to NEAs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting detailed scientific investigations of these primitive objects. Current analyses of operational concepts suggest that stay times of 15 to 30 days may be possible at these destinations. In addition, the resulting scientific investigations would refine designs for future extraterrestrial In Situ Resource Utilization (ISRU), and assist in the development of hazard mitigation techniques for planetary defense. Conclusions: The scientific and hazard mitigation benefits, along with the programmatic and operational benefits of a human venture beyond the Earth-Moon system, make a piloted mission to a NEA using NASA's proposed human exploration systems a compelling endeavo

    Mutations in PIK3CA are infrequent in neuroblastoma

    Get PDF
    BACKGROUND: Neuroblastoma is a frequently lethal pediatric cancer in which MYCN genomic amplification is highly correlated with aggressive disease. Deregulated MYC genes require co-operative lesions to foster tumourigenesis and both direct and indirect evidence support activated Ras signaling for this purpose in many cancers. Yet Ras genes and Braf, while often activated in cancer cells, are infrequent targets for activation in neuroblastoma. Recently, the Ras effector PIK3CA was shown to be activated in diverse human cancers. We therefore assessed PIK3CA for mutation in human neuroblastomas, as well as in neuroblastomas arising in transgenic mice with MYCN overexpressed in neural-crest tissues. In this murine model we additionally surveyed for Ras family and Braf mutations as these have not been previously reported. METHODS: Sixty-nine human neuroblastomas (42 primary tumors and 27 cell lines) were sequenced for PIK3CA activating mutations within the C2, helical and kinase domain "hot spots" where 80% of mutations cluster. Constitutional DNA was sequenced in cases with confirmed alterations to assess for germline or somatic acquisition. Additionally, Ras family members (Hras1, Kras2 and Nras) and the downstream effectors Pik3ca and Braf, were sequenced from twenty-five neuroblastomas arising in neuroblastoma-prone transgenic mice. RESULTS: We identified mutations in the PIK3CA gene in 2 of 69 human neuroblastomas (2.9%). Neither mutation (R524M and E982D) has been studied to date for effects on lipid kinase activity. Though both occurred in tumors with MYCN amplification the overall rate of PIK3CA mutations in MYCN amplified and single-copy tumors did not differ appreciably (2 of 31 versus 0 of 38, respectively). Further, no activating mutations were identified in a survey of Ras signal transduction genes (including Hras1, Kras2, Nras, Pik3ca, or Braf genes) in twenty-five neuroblastic tumors arising in the MYCN-initiated transgenic mouse model. CONCLUSION: These data suggest that activating mutations in the Ras/Raf-MAPK/PI3K signaling cascades occur infrequently in neuroblastoma. Further, despite compelling evidence for MYC and RAS cooperation in vitro and in vivo to promote tumourigenesis, activation of RAS signal transduction does not constitute a preferred secondary pathway in neuroblastomas with MYCN deregulation in either human tumors or murine models
    • …
    corecore