104 research outputs found

    Information content-based gene ontology semantic similarity approaches: toward a unified framework theory

    Get PDF
    Several approaches have been proposed for computing term information content (IC) and semantic similarity scores within the gene ontology (GO) directed acyclic graph (DAG). These approaches contributed to improving protein analyses at the functional level. Considering the recent proliferation of these approaches, a unified theory in a well-defined mathematical framework is necessary in order to provide a theoretical basis for validating these approaches. We review the existing IC-based ontological similarity approaches developed in the context of biomedical and bioinformatics fields to propose a general framework and unified description of all these measures. We have conducted an experimental evaluation to assess the impact of IC approaches, different normalization models, and correction factors on the performance of a functional similarity metric. Results reveal that considering only parents or only children of terms when assessing information content or semantic similarity scores negatively impacts the approach under consideration. This study produces a unified framework for current and future GO semantic similarity measures and provides theoretical basics for comparing different approaches. The experimental evaluation of different approaches based on different term information content models paves the way towards a solution to the issue of scoring a term’s specificity in the GO DAG

    Generation and Analysis of Large-Scale Data-Driven Mycobacterium tuberculosis Functional Networks for Drug Target Identification

    Get PDF
    Technological developments in large-scale biological experiments, coupled with bioinformatics tools, have opened the doors to computational approaches for the global analysis of whole genomes. This has provided the opportunity to look at genes within their context in the cell. The integration of vast amounts of data generated by these technologies provides a strategy for identifying potential drug targets within microbial pathogens, the causative agents of infectious diseases. As proteins are druggable targets, functional interaction networks between proteins are used to identify proteins essential to the survival, growth, and virulence of these microbial pathogens. Here we have integrated functional genomics data to generate functional interaction networks between Mycobacterium tuberculosis proteins and carried out computational analyses to dissect the functional interaction network produced for identifying drug targets using network topological properties. This study has provided the opportunity to expand the range of potential drug targets and to move towards optimal target-based strategies

    Orienting Future Trends in Local Ancestry Deconvolution Models to Optimally Decipher Admixed Individual Genome Variations

    Get PDF
    Rapid advances in sequencing and genotyping technologies have significantly contributed to shaping the area of medical and population genetics. Several thousand genomes are completed with millions of variants identified in the human deoxyribonucleic acid (DNA) sequences. These genomic variations highly influence changes in phenotypic manifestations and physiological functions of different individuals or population groups. Of particular importance are variations introduced by admixture event, contributing significantly to a remarkable phenotypic variability with medical and/or evolutionary implications. In this case, knowledge of local ancestry estimates and date of admixture is of utmost importance for a better understanding of genomic variation patterns throughout modern human evolution and adaptive processes. In this chapter, we survey existing local ancestry deconvolution and dating admixture event models to identify possible gaps that still need to be filled and orient future trends in designing more effective models, which account for current challenges and produce more accurate and biological relevant estimates

    A post-gene silencing bioinformatics protocol for plant-defence gene validation and underlying process identification: case study of the Arabidopsis thaliana NPR1

    Get PDF
    Advances in forward and reverse genetic techniques have enabled the discovery and identification of several plant defence genes based on quantifiable disease phenotypes in mutant populations. Existing models for testing the effect of gene inactivation or genes causing these phenotypes do not take into account eventual uncertainty of these datasets and potential noise inherent in the biological experiment used, which may mask downstream analysis and limit the use of these datasets. Moreover, elucidating biological mechanisms driving the induced disease resistance and influencing these observable disease phenotypes has never been systematically tackled, eliciting the need for an efficient model to characterize completely the gene target under consideration

    Designing Data-Driven Learning Algorithms: A Necessity to Ensure Effective Post-Genomic Medicine and Biomedical Research

    Get PDF
    Advances in sequencing technology have significantly contributed to shaping the area of genetics and enabled the identification of genetic variants associated with complex traits through genome-wide association studies. This has provided insights into genetic medicine, in which case, genetic factors influence variability in disease and treatment outcomes. On the other side, the missing or hidden heritability has suggested that the host quality of life and other environmental factors may also influence differences in disease risk and drug/treatment responses in genomic medicine, and orient biomedical research, even though this may be highly constrained by genetic capabilities. It is expected that combining these different factors can yield a paradigm-shift of personalized medicine and lead to a more effective medical treatment. With existing “big data” initiatives and high-performance computing infrastructures, there is a need for data-driven learning algorithms and models that enable the selection and prioritization of relevant genetic variants (post-genomic medicine) and trigger effective translation into clinical practice. In this chapter, we survey and discuss existing machine learning algorithms and post-genomic analysis models supporting the process of identifying valuable markers

    Hydroxyurea-Induced miRNA Expression in Sickle Cell Disease Patients in Africa

    Get PDF
    Hydroxyurea (HU) is clinically beneficial in sickle cell disease (SCD) through fetal hemoglobin (HbF) induction; however, the mechanism of HU is not yet fully elucidated. Selected miRNAs have been associated with HU-induced HbF production. We have investigated differential HU-induced global miRNA expression in peripheral blood of adult SCD patients in patients from Congo, living in South Africa. We found 22 of 798 miRNAs evaluated that were differentially expressed under HU treatment, with the majority (13/22) being functionally associated with HbF-regulatory genes, including BCL11A (miR-148b-3p, miR-32-5p, miR-340-5p, and miR-29c-3p), MYB (miR-105-5p), and KLF-3 (miR-106b-5), and SP1 (miR-29b-3p, miR-625-5p, miR-324-5p, miR-125a-5p, miR-99b-5p, miR-374b-5p, and miR-145-5p). The preliminary study provides potential additional miRNA candidates for therapeutic exploration

    A web-based protein interaction network visualizer

    Get PDF
    Abstract Background Interaction between proteins is one of the most important mechanisms in the execution of cellular functions. The study of these interactions has provided insight into the functioning of an organism’s processes. As of October 2013, Homo sapiens had over 170000 Protein-Protein interactions (PPI) registered in the Interologous Interaction Database, which is only one of the many public resources where protein interactions can be accessed. These numbers exemplify the volume of data that research on the topic has generated. Visualization of large data sets is a well known strategy to make sense of information, and protein interaction data is no exception. There are several tools that allow the exploration of this data, providing different methods to visualize protein network interactions. However, there is still no native web tool that allows this data to be explored interactively online. Results Given the advances that web technologies have made recently it is time to bring these interactive views to the web to provide an easily accessible forum to visualize PPI. We have created a Web-based Protein Interaction Network Visualizer: PINV, an open source, native web application that facilitates the visualization of protein interactions ( http://biosual.cbio.uct.ac.za/pinv.html ). We developed PINV as a set of components that follow the protocol defined in BioJS and use the D3 library to create the graphic layouts. We demonstrate the use of PINV with multi-organism interaction networks for a predicted target from Mycobacterium tuberculosis, its interacting partners and its orthologs. Conclusions The resultant tool provides an attractive view of complex, fully interactive networks with components that allow the querying, filtering and manipulation of the visible subset. Moreover, as a web resource, PINV simplifies sharing and publishing, activities which are vital in today’s research collaborative environments. The source code is freely available for download at https://github.com/4ndr01d3/biosual
    corecore