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Chapter

Orienting Future Trends in Local
Ancestry Deconvolution Models to
Optimally Decipher Admixed
Individual Genome Variations

Gaston K. Mazandu, Ephifania Geza, Milaine Seuneu
and Emile R. Chimusa

Abstract

Rapid advances in sequencing and genotyping technologies have significantly
contributed to shaping the area of medical and population genetics. Several thou-
sand genomes are completed with millions of variants identified in the human
deoxyribonucleic acid (DNA) sequences. These genomic variations highly influence
changes in phenotypic manifestations and physiological functions of different indi-
viduals or population groups. Of particular importance are variations introduced by
admixture event, contributing significantly to a remarkable phenotypic variability
with medical and/or evolutionary implications. In this case, knowledge of local
ancestry estimates and date of admixture is of utmost importance for a better
understanding of genomic variation patterns throughout modern human evolution
and adaptive processes. In this chapter, we survey existing local ancestry
deconvolution and dating admixture event models to identify possible gaps that still
need to be filled and orient future trends in designing more effective models, which
account for current challenges and produce more accurate and biological relevant
estimates.

Keywords: genomic variations, admixture, local ancestry, dating admixture event,
linkage disequilibrium

1. Introduction

Today, advances in high-throughput technologies have generated huge amounts
of human genomics data in public domains. These data are useful for medical and
population genetics to understand the population history, human evolution and
demographics, susceptibility to disease, and response to drug. Over time, humanity
has experienced the exchange of genetic materials across populations, mainly due to
population migrations [1], which have led to wide human genetic variations as
results of interbreeding or mating between different populations previously iso-
lated. These genetic variations observed in the human deoxyribonucleic acid (DNA)
sequences are caused by inheritance processes, such as mutation and recombina-
tion. Generally, the mating process yields the genetic recombination break points,
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introduces some variations, and creates mixed DNA segments. As a consequence,
current human populations are admixed [2, 3] with specific genomes displaying a
mosaic of segments originating from different ancestral populations [1, 2, 4], wide
phenotypic variations, divergent genetic ancestry, and different traits observed
among individuals in worldwide population groups. Thus, it is critical to understand
the dynamics related to the origin of these variations, the evolution process, and its
consequences in human heredity and health.

Studying admixture patterns in human populations consists of characterization
of admixture features in human populations, including admixture mapping and
date to admixture events. Admixture mapping combines both the identification of
genetic variants underlying the ethnic difference in disease risk and inference of
ancestry estimates associated with these genetic variants. Estimation of ancestry is
commonly known as genetic ancestry inference, which is either global or local
ancestry inference. Global ancestry inference estimates the overall proportion con-
tributed by each ancestral population to the admixed genome; while, local ancestry
deconvolution (local ancestry inference) estimates the number of copies from a
particular population at a given site [5]. Together, admixture mapping and date to
admixture events provide a better understanding of the genetic variation features
throughout modern human evolution, the demographics, and adaptive processes of
human populations. Currently, analyzing admixture patterns has become central to
genomics research, contributing to a wide range of biomedical applications. Current
advance in technologies is facilitating the movement of people worldwide, thus
influencing the complexity of population admixture dynamics and leading to multi-
faceted admixture events. On the other hand, the determination of local ancestry
through genotyping and microarray datasets has empowered the approaches for
dating mutation, selection, and admixture events [6, 7].

The significance of the local ancestry inference topic is viewed through the
research interests it has raised over the last two decades. Several models exist for
local ancestry deconvolution, including ANCESTRYMAP [8], ADMIXMAP [9],
SABER [10], LAMP [11], LAMPLD/LAMPHAP [12], SUPPORTMIX [13], EILA
[14], LOTER [15], etc. Figure 1 displays the implementation dynamics of different
local ancestry deconvolution models graphically, indicating the time each model
was introduced. Local ancestry inference is relevant in personalizing medicines,
understanding complex diseases, localizing missing sequences in reference genomes
and understanding the population history and demographics. Subsequently, several
studies have particularly been focusing on dating past admixture events, relevant to
population migrations, heritable genes associated to some diseases, and responses to
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Figure 1.
The evolution of local ancestry deconvolution since 2003 to 2017.
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Figure 2.

A partial worldwide admixture painting map. The figure shows several worldwide admixed populations
with patterns identified through published paper on population structure from 2008 to 2018. The population
migrations within and between continents have resulted in different admixed populations ranging from one-
to five-way admixtures.

treatment [16]. The date of admixture in a given population can be predicted by
analyzing the ancestral track, break-points, and linkage disequilibrium (LD) [17].
Also, distinction between date of admixture events is made with the use of LD and
ancestral tracts in the admixed genomes [17]. Nowadays, there are several models
for predicting the age of an admixture event, which are classified into two main
groups: LD-based approaches and haplotype-based approaches [17, 18]. These
models use information from genomes of several population groups around the
world as representative or equivalent ancient populations known to influence the
migration and/or admixture processes, yielding observed admixed population pat-
terns worldwide (Figure 2).

In this chapter, we survey current models for deconvoluting local ancestry and
dating admixture events and explore computational techniques used in these
models. We highlight advances made so far in this genomic era and opportunities
behind these models and challenges or gaps that still need to be addressed. This
informs users and researchers on the current state of research, and orient future
trends in designing more effective models, which account for current challenges
and produce more accurate and biological relevant estimates. In the subsequent
sections, we provide an overview of existing methods used for inferring local
ancestry estimates and dating admixture events.

2. Overview of admixture feature inference models

In this section, we survey current models used to elucidate admixture patterns,
including local ancestry estimates (deconvolution) and dating admixture events.
These models assume that the T genotyped sites are biallelic and the genotype infor-
mation of the K reference candidate ancestral and admixed populations are considered
known. Ancestry at different sites or windows follows a Markov chain. Recombina-
tion is assumed to occur at every generation resulting in Poison recombination points
with a rate which depends on both the recombination rate, 7, and number of genera-
tions since admixture, g, and individuals are independent of each other.
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2.1 Local ancestry inference models

As pointed out previously, existing local ancestry inference models can be cate-
gorized into two main groups based on whether the model makes use of admixture/
background linkage disequilibrium (LD) or not.

2.1.1 LD-based models for local ancestry inference

LD-based models account for LD in local ancestry deconvolution, and due to the
importance of LD in disease mapping, the first local ancestry methods fall into this
category. They assume that ancestry along an admixed individual genome follows a
first order Markov chain. This means that the immediate past state captures all the
information on past states [19]. As a result, LD-based models assume that, at every
site, the observed admixed genotypes are generated by the unobserved ancestry,
and hence, Hidden Markov Model (HMM) and its extensions are used to infer the
unobserved (hidden) states. Thus, to deconvolute ancestry along the admixed
genome, these models have three model parameters, namely the initial, transition
and observation, or emission probability models. Due to uncertainty and the num-
ber of parameters involved, LD-based methods use Markov Chain Monte Carlo
(MCMC), forward-backward, or Viterbi algorithms to determine the hidden ances-
try sequence for a given individual. Falush et al. and Patterson et al. modeled
ancestry switch between ancestry populations at a given site, X;e{1, ..., K}, by

P(X1 =klq,7) = q,, 1)
P(X, = kX, 1 =k q.r) = 6(K =k)e ™ + (1—e)q, for 1<t<T ()

representing the first marker, and the transition probability between consecutive
markers with & (k = k/> is the indicator function and d; the genetic distance

between sites t and t — 1, above and ¢, the proportion of ancestry contributed by
candidate ancestral population k such that ¢ = (g, ...,¢,,) is a vector of ancestry
inherited from each ancestral population. On haploid data, the probability of a
recombination event is 1 — e~%", meaning that the probability of no recombination
is e~%" [8, 20]. LD-based methods can be subdivided into admixture LD-based and
admixture and background LD methods. Note that admixture LD occurs when
ancestry at nearby markers is inherited together and background LD is the LD
within ancestral populations, and it depends highly on population history

(i.e, generated by genetic drift and population bottlenecks).

2.1.1.1 Admixture LD-based models

Admixture LD-based methods are models that account for LD that resulted from
the admixture process. They do not model background LD. Admixture LD-based
methods include the early methods, for example, STRUCTURE V2 [20],
ANCESTRYMAP [8], and ADMIXMAP [9], which are based on the Bayesian
framework. Early methods rely on markers that show significant difference in
frequency between ancestral populations (AIMs). Admixture LD-based models
assume that markers are independent and the global and ancestral allele frequencies
are known. They integrate HMM with MCMC, and their switch model and initial
and transition models are as in Egs. (1) and (2), respectively. Since LD-based
methods do not model background LD, their observation model depends on only
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the allele frequency of the ancestry at that site. For instance, assuming K = 2,
Patterson et al. defined the emission probability by

( 2 2—n,
PZ“(l—Pk) “ if n,=0o0r1
Na
P(Y=y[X;=n)=1{ [ 2(-p)(1-p)) 3)
p2(1 _Pz) +171(1 _Pz) if ng=2
\ P1P2

where y and 7,€{0, 1} are numbers of reference alleles of an admixed individual at
t, and that of alleles from population 1, respectively. p, is the allele frequency of
population k€{1, 2} at the site t, such that whenn, = 0, p, = p, while p, = p, when
n, = 2. Nowadays, technological, statistical, and computational advances avail
enormous amounts of high density SNP data. Although high density SNPs violate
the independence assumption due to background LD [21], they contain more infor-
mation than in AIMs [22]. To loosen the independence assumption and minimize
noise and systematic biases from unmodelled LD, more advanced local ancestry
inference methods emerged [22]. These methods include SEQMIX [23], PCADMIX
[24], and SUPPORTMIX [13].

SUPPORTMIX [11] models only admixture LD by combining support vector
machines (SVMs) and HMM. It was proposed in 2012 to improve on the computa-
tional time and address the challenge of a few typed or nonexistent reference
panels, which overall improve multi-way local ancestry deconvolution.
SUPPORTMIX is the first model to allow the learning of ancestral surrogates given a
pool of reference panels. As a result, it is capable to train ancestral populations that
are bigger in size than those that are mixed. Since SVMs can handle huge datasets,
SUPPORTMIX is faster than early methods. It uses the rich haplotype information.
Also proposed in 2012, PCADMIX [24] divides the genome into contiguous win-
dows of SNPs as in SUPPORTMIX. It leverages principal component analysis from
proxy ancestral haplotypes to model admixture LD under a standard HMM. Similar
to SUPPORTMIX, PCADMIX is fast and requires phased data. Nevertheless,
SUPPORTMIX and PCADMIX do not model phase switch errors, and as a result, in
2013, SEQMIX [23] was proposed. Unlike all other admixture LD-based methods,
SEQMIX is based on exome sequence, reads data, and uses HMM. SEQMIX models
only admixture LD and prunes SNPs in background LD. As a result, to reduce noise
and systematic biases from using all SNPs [10] whilst not fully modeling LD (back-
ground), admixture and background LD methods emerged [22].

2.1.1.2 Admixture and background LD models

Since the biological data often have some dependences that violate the indepen-
dence assumption in standard HMM, admixture LD-based methods are often not
realistic. To relax the independence assumption, the HMM is extended to either
Markov HMM, factorial HMM, hierarchical HMM, or two-layer HMM or other
multivariate statistical models such as multivariate normal distribution (MVN) and
a rich ancestral haplotype data are used unlike early methods. This is the case for
SABER [10], SWITCH [25], HAPAA [26], HAPMIX [4], MULTIMIX [27], ALLOY
[28], and ELAI [29]. MHMMs were the first HMM extension in local ancestry. They
were first implemented in SABER and later in SWITCH. SABER was the first
method to model background LD in the genetic ancestry inference. MHMM
assumes that the current observed haplotype depends on both the current ancestry
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and the immediate past observation. The difference in the MHMM and admixture
LD HMM-based is that when ancestry switches between sites t — 1 and t, then the
MHMM observation model depends on the joint distribution of allele frequencies at
the two sites [6, 30], defined as follows [10]:

P(Yt — Vi1 =d, X, =k, Xy = k) — B, <c,d,k’,k>,

/ B / C,d or k/ = k (4)
P<Yt:C’Yt—1:d7Xt:k7Xt/ :k) — f’t< )f
By ,(c) otherwise

where B, ,(c,d) is the probability of having alleles at marker t provided there was

allele d at t — 1 and By, ;(c) the allele frequency of alleles at marker t have for origins
the population k. However, if the ancestry does not switch, then the observation
model is like that of models in Section 2.1.1.1. The transition model of the SABER
model accounts for the differences in admixture times that are in the real case of
continuous gene flow where populations contribute their genetic material to the
admixture in different generations [10]. Tang et al. defined the probability of
switching from ancestry k at t to k at t as

2

&i

I —— —& fori=j
Az] — kgl(gkgk (5)
q; LA otherwise
Zk 19k 8k

where g, is the admixture time when population k started to contribute to the
admixture.

However, SABER has a large parameter set, and does not explicitly model back-
ground LD as it models background LD using first order Markov chain [22]; other
methods such as SWITCH were proposed. SWITCH takes into recombination even
if it does not result in an ancestry switch, emerged. In contrast to SABER, SWITCH
conditions the MHMM on recombination. Similar to early methods, probability of
recombination depends on the admixture generations, genetic distance between
consecutive SNPs, and the recombination rate. Thus, if the transition probability
model in SWITCH is marginalized over recombination, then it is similar to Eq. (2)
for two-way and Eq. (5) for multi-way. Although SWITCH models background LD
and estimates recombination rates, the authors recommended richer MHMM or
other different models that would outperform the SWITCH and SABER pairwise
models [25]. As a result, methods that use both large- and small-scale HMM,
referred to as the HHMM, were introduced.

2.1.2 Non-LD-based local ancestry inference models

Non-LD methods neither model background nor admixture LD. They either
remove SNPs in LD which is the case for LAMP [11] and WINPOP [31], or use all
SNPs (linked and unlinked SNPs) without modeling LD; this is the case for EILA
[14], RFMIX [32], and LOTER [15]. Since MHMMs have a large number of param-
eters and do not model LD explicitly, an algorithmic approach that divides genome
into windows of SNPs, LAMP [11], emerged in 2008. LAMP is fast and robust, and
can infer local ancestry even without proxy ancestral genotypes. This is the case for
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two-way admixtures. It uses the naive Bayes classifier and a clustering algorithm
known as the iterative conditional modes. LAMP estimates the most probable
ancestry at a site by applying the majority vote for each SNP [11]. Although accu-
racy is comprised, LAMP does not suffer from challenges of HMM and extension.
As a result, LAMP underperforms in closely related populations, and hence it was
extended to WINPOP [31], a dynamic programming algorithm. Unlike LAMP,
WINPOP assumes at least one recombination event within each window and varies
the window length depending on the genetic distance between populations. Hence,
WINPOP and LAMP outperform other methods in closely and distantly related
populations, respectively. Both LAMP and WINPOP assume unlinked markers and
discards SNPs in LD.

As the admixed sequence data availability increases, Maples et al. proposed a
discriminative approach to estimate local ancestry, RFMIX [32]. A discriminative
approach estimates the posterior probability directly and not via the joint probabil-
ity distribution. In contrast to generative ancestry inference models, RFMIX uses
the information contained in admixed individuals. This is advantageous in cases of
genotyped few reference panels. This is the case for Native Americans [32]. RFMIX
uses conditional random fields (CRFs) parametrized on random forests. It outper-
forms in multi-way admixtures maybe due to modeling phase switch errors. In
2013, EILA [14], a multivariate statistic based method, was proposed particularly to
increase inference power through addressing three common challenges in local
ancestry. Addressed challenges are the independence of SNP assumption, difficul-
ties in identifying break points, and the use of three genotype values. Instead of raw
genotypes, EILA uses a numerical value between 0 and 1. The score determines how
close SNPs are to the ancestral populations. Breakpoints are a challenge to identity,
but EILA identifies them by fused quantile regression facilitating the use of esti-
mates in admixture dating. Finally, k-means classifiers are used to infer ancestry
using all genotyped SNPs [14].

Recently, a software package that deconvolves local ancestry in multi-way
admixtures for a wide range of species, LOTER [15], was proposed. LOTER can
account for phase errors in two-way admixture only. It facilitates the local ancestry
inference process and its application in non-model species [15]. Unlike other
methods, LOTER needs no biological such as admixture time and recombination
rate or statistical parameters such as, number of hidden states and misfit probabil-
ities to deconvolve ancestry [15]. Although it uses the Li and Stephen’s copying
model [33] as in LAMPLD/LAMPHAP, LOTER is a nonprobabilistic approach for-
mulated from an optimization problem. Its solution is obtained through dynamic
programming.

Finally, different existing LD and non-LD-based local ancestry inference models
are summarized in Table 1 extracted from Geza et al. [34].

2.2 Models for dating admixture events in a genome

Several models are now available to determine the date of admixture events in
a given admixed genome. Breakpoints of haplotypes are used by some models
while others focus on the ancestry blocks. Models based on ancestry blocks for
dating admixture are formulated using either an empirical criteria or variants
associated with a specific population. In order to determine the average length of
the admixture block, these methods then assign ancestry on predefined windows
using either wavelet transformation or conditional random fields [35]. On the
other hand, there are models requiring rapid decrease in haplotype block sizes to
estimate the date of the admixture event [36]. This suggests that, in general,



Software Multi- Account LD model Biological/statistical parameters Reference Admixed Year of
way LD populations populations publication
STRUCTURE V2* v v HMM Markers, and ancestry proportions Unphased Unphased August 2003
ANCESTRYMAP* X v HMM Physical map, recombination and ancestry Unphased Unphased May 2004
proportions
ADMIXMAP* HMM Physical map and ancestry proportions Unphased Unphased May 2004
SABER v MHMM Physical map or recombination distance Phased/unphased Phased/unphased July 2006
“LAMP” v X X Admixture generations, LD threshold, and physical =~ Unphased Unphased February 2008
map
HAPAA 4 v/ HHMM Admixture generations and genetic divergence Phased Phased February 2008
SWITCH v v MHMM Recombination rate Phased Phased February 2008
GEDI-ADMX v v Fixed size FHMM Admixed and ancestral SNPs (physical map) Phased Unphased May 2009
WINPOP v X X Recombination, admixture generations, LD threshold, Unphased Unphased June 2009
and physical map
HAPMIX X 4 HHMM Genetic map mutation rate and admixed and ancestral Phased Unphased June 2009
SNPs
CHROMOPAINTER v Co-ancestry matrix =~ Recombination rate Phased Phased January 2012
LAMPLD HHMM Number of hidden states, window size and physical ~ Phased Unphased May 2012
map
SUPPORTMIX* v v HMM Admixture generations and genetic map Phased Phased June 2012
PCADMIX* v Windows of blocks ~ Genetic map and window size Phased Phased August 2012
of SNPs
mSPECTRUM 4 SNPs, mutation and recombination rate Phased Phased August 2012
MULTIMIX v MVN Genetic map, legend file and misfitting probabilities ~ Phased/unphased Phased/unphased November

2012
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Software Multi- Account LD model Biological/statistical parameters Reference Admixed Year of
way LD populations populations publication
ALLOY v v Non-homogeneous  Markers, ancestral proportions, admixture Phased Phased February 2013
VLMC generations, and genetic map
RFMIX v X X Genetic map, window size, and admixture Phased Phased August 2013
generations
EILA v X X Physical map Unphased (no missing Unphased (no missing November
values) values) 2013
SEQMIX v X X Genetic map Unphased Unphased November
2013
ELAI v v Two layer HMM Admixture generations, lower and upper cluster Phased/unphased Phased/unphased May 2014
LOTER X X — Phased Phased November
2017
Table 1.

Existing 20 ancestry deconvolution tools: v indicates the ability of the software to perform a specified task, X indicates the inapplicability of the task by a particular tool. Unless explicitly
specified, LD refers to background LD.
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models used for dating admixture events can be subdivided in two main classes
[17, 18], namely those based on LD and those based on the haplotype distribution,
as mentioned earlier.

2.2.1 LD-based models for dating admixture events

An admixture event is mainly characterized by the transfer of genes from
the ancestral populations to the admixed ones. This leads to the appearance of
linkage disequilibrium with regard to the ancestral populations. However, this
LD formed often decreases with time. Also, the rate of decay of LD is a
function of recombination and the proportion of the admixture [35]. Inversely,
many methods employ this rate to calculate the time since the admixture
event occurs.

In 2011, Moorjani et al. introduced a method to determine the weighted correla-
tion for a pair of SNPs [36]. This correlation coefficient is further used to measure
the LD with ancestral populations [37]. The time of admixture is then determined
by analyzing the correlation with respect to the genetic distance, and also fitting
using a least squares method the decay of the correlation [35]. This method got
improved in 2011 by Loh et al. [18]. The major improvements are in terms of
computation. Loh et al. employed instead a fast Fourier transform and other faster
techniques to determine the optimal distance to the fitting curve. This method has
another advantage that it reduces considerable biases in the estimation of the time
of admixture [18, 36]. Later, Loh et al.’s method was improved by Pickrell et al. [38]
by introducing the notion of mixture exponential decay in order to take into
account the admixture events in the given admixed population history. It mainly
focuses on the decay of the LD.

2.2.1.1 Multiple weighted correlation coefficient

Let us consider three ancestral populations k1, k>, and k3, and Q the admixed
population. Let us denote by w17, w13, and w,_3 three weighted linkage disequi-
librium scores computed based on all possible pairs of SNPs between the three
ancestral populations: k1 — k,, k1 — k3, and k, — ks, respectively, in the admixed
population Q calculated using the method proposed by Loh et al. According to
Prickrell et al., the multiple weighted correlation coefficient is [38],

2

C / w%% + 0)% — 20)2_3601_2(01_3 (6)
fe1—ko, ki—ka, keo—k3 — 1-—w :
2-3

The date of admixture between population k4 and k3 is

5 .
wo +wsze ™0, for one admixture event — D y),

@)

Dy ki, kiky—kaks = o T :
wo + we M0 + woe 05, in the case of two admixture events — D(z),

with 7, and #; the number of generations; §, the genetic distance; w; and w-
stand for the value of the multiple weighted LD; and wy the affine term. Dy is the
date of admixture of population Q in the case of admixture either between k; — k;
or k; — k3. On the other hand, if it is assumed that two admixture events took place
between ki — k3 and either k; — k; or k; — k3, the date of the admixed population is
given by D).

10
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2.2.2 Haplotype distribution-based models for dating admixture events

Among the haplotype-based approaches, there is the likelihood method intro-
duced in 2009 by Price et al. [4]. It basically determines the number of breakpoints
using Hidden Markov Model. It is also able to determine the number of alleles at a
particular site inherited from a given ancestor in a population. This is done in two
steps. First, the method consists in identifying haplotype from the proxy ancestry
populations, and secondly, the origin of each haplotype bock is identified by com-
paring their likelihood for one ancestral population versus the others. Considering
an admixed genome, the likelihood of an observed allele is given by

0,P(tyo = 0) + (1 — 0Pty = 1), if u = v,

8
03P (tyy, = 0)+ (1 —03)P(ty, = 1), otherwise ®

Haul0) = {

with 6,, u€{1,2, 3} the mutation parameter is; h represents the haplotype site in the
chromosomal offspring; the function t,., is an indicator function. It takes the value 1
if individual w coming from offspring x has the same haplotype with the ancestral
population v and 0 otherwise; and P is the probability to inherit a pair of haplotype
[4]. The number of generations since admixture is given by

C
C=ma e ©)

where ( is the total Morgan length, y the proportion of admixture, and C the
observed number of breakpoints [4].

On the other hand, Pugach et al. [17] employed the wavelet transform to design
a haplotype block approach. The aim of this method is to derive the time of admix-
ture of a given population using the simple hybrid isolation model. It proceeds in
two main steps. First, it obtains a signal of admixture from the admixed data using
the principal component technique. The second step consists in deriving the date of
admixture using the signal obtained in the first step [17].

Pool and Nielsen also built a haplotype-based approach. It used precautionary
ancestral populations to infer the date of admixture from the genome of an admixed
population [39]. It assumed that after a number of generation g, the distribution of
the ancestral haplotypes follows exponential distribution given by

f(hg) =ge ™ (10)

where 1 is the length of haplotypes. Also, the mean of this distribution is known and
is equal to ..

Further methods include that of Gravel developed in 2012 for the identification
of multiple ancestral populations in a given admixture dataset [40]. Also, Jin et al.
[41] came up with a similar method to explain admixture dynamics. The method
incorporates several models including gradual admixture (GA), hybrid isolated
(HI), and continuous gene flow (CGF) models [41], which can be extended to
GA-Isolation (GA-I) and CGF-Isolation (CGF-I) by considering isolation after
admixture [42]. Hellenthal et al. [43] on the other hand built up on the work of
Lawson et al. [44] on dating admixture. This method particularly considers the
genome of an admixed individual to be a set chunk DNA coming from other
individuals. The scheme of this method is mainly made of two stages. The first stage
consists in dividing the genome into chunks and matching each of them to the
proper ancestral individual. This stage is achieved with the help of Hidden Markov

11
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Model. The second stage consists in identifying haplotypes and determining their
respective ancestral population [43, 44]. Moreover, the admixture event and its
date are derived by fitting the decay of the ancestral haplotype with an exponential
distribution curve. Moreover, Ni et al. developed a method based on the observation
that the date of admixture events is related to the model used. Their method
consists in using the likelihood ratio test to identify the best model for the inference
of the date of admixture. Furthermore, they are able to estimate several admixture
events with the given optimal model [35].

Finally, different existing models and tools for dating admixture events are
summarized in Table 2 extracted from Chimusa et al. [35].

Tool Category Admixture Priori Multi- Online link
model proxy way
ancestral  events
raw data
ROLLOFF LD-based model =~ HI Yes No https://github.com/
DReichLab/Ad
mixTools/
ALDER HI Yes No http://cb.csail.mit.edu/
cb/alder/
MALDER HI Yes Yes https://github.com/joe
pickrell/malder/
CAMer HI, GA, Yes Yes https://github.com/da
CGF, GA-I, vid940408/CAMer
CGF-I
IMAAPs HI, GA, Yes Yes http://www.picb.ac.c
CGF, GA-I, n/PGG/resource.php
CGF-1
StepPCO Haplotype/ HI Yes Yes https://bioinf.eva.mpg.
ancestry block size de/download/Ste
distribution-based pPCO/
model
Adware HI, Dual- Yes Yes https://cran.r-project.
admixture org/web/packages/ad
wave/index.html
HAPMIX HI Yes Yes http://genetics.med.ha
rvard.edu/reichlab/Re
ich_Lab/Software.h
tml/
MultiWavelner HI Yes Yes https://github.com/
xyang619/MultiWave
Infer/ or
http://www.picb.ac.c
n/PGG/resource.php
GLOBBERTROTTER HI, GA, No Yes https://github.com/
CGF maarjalepamets/huma
n-admixture/
Tracts HI, GA, No Yes https://github.com/sg
CGF ravel/tracts/
Ancestry HMM HI No No https://github.com/

russcd/

Table 2.
Existing dating admixture genomic tools.
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3. Challenges and perspectives
3.1 Case of local ancestry inference models

Although several models exist to deconvolve local ancestry, most studies that
evaluate such models showed that deviations in local ancestry estimates still exist in
multi-way admixtures. Deviations in local ancestry also result from genetic drift,
miscalling true ancestry, and genotyping errors. However, the signals from these
factors affect the whole genome while that of unmodelled natural selection affects
particular regions. For example, Chen et al. using four local ancestry inference
models to scan for disease-related loci through admixture mapping showed that
although all of them are LD based and divide the genome into windows of contin-
uous SNPs, MULTIMIX and LAMPLD estimates differed in almost 20% of the
analyzed SNPs. This results from the differences in the biological and statistical
parameters they require and the mathematical approaches they use. Another asso-
ciation study by Chimusa et al. [45] also pointed out that admixture mapping is still
limited by inaccuracies in multi-way local ancestry deconvolution when they eval-
uated one LD-based and one non-LD-based local ancestry models, WINPOP and
LAMPLD.

Inaccuracies in local ancestry estimates may result from the use of statistical or
biological parameters in the estimation process, which are not always accurate when
provided. It could also be due to the dependence of models on reference panels
which for some populations are few or even not sampled for others. This is the case
for the Native Americans. More so for other admixed populations, their history is
not well known. When applied to ancient admixtures, existing methods may yield
spurious estimates as they were designed for recent admixtures. Existing methods
do not account for natural selection; hence, some deviations exist in regions that are
under selection [45]. Also, most of them are benchmarked for three-way
admixtures.

Since each model was introduced to address a particular challenge that models
before it faced, it is clearly expected that no model or tool can achieve the best
performance in all admixture scenarios and not trading estimate accuracy with
computational speed. Using existing studies by Geza et al. [34], more than 50% of
studies that either introduced a model or evaluated methods for association map-
ping showed that LAMPLD/LAMPHAP outperforms most LD-based methods. And
the only LD-based method than outperformed LAMPLD is ELAI; however, this is
the only study that assessed ELAI with other models. In cases where LD-based
models were compared to non-LD-based models, RFMIX outperformed LAMPLD
in three cases highlighted in [34], while another separate study aiming to determine
the place of admixture of an admixed population RFMIX also outperformed. This
could be because RFMIX can deconvolve ancestry in closely related populations
[46]. However, a recent assessment between RFMIX and LOTER resulted in LOTER
outperforming in ancient admixtures [15].

Generally, each model is implemented as a tool in local ancestry deconvolution,
existing as individual scripts requiring unique inputs and producing unique outputs.
This challenges researchers with a limited computational background; thus, there
is lack of a unified framework which can require a standard easy to manipulate
input files and output results in a way that is easy to process for further application.
In conclusion, for informed decisions on models and algorithms, existing models or
tools should be assessed within a unified framework. This will allow them to be
tested on different admixture scenarios and also incorporating most state-of-the-art
LD and non-LD based models.
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3.2 Case of the dating admixture models

The evolution of human populations and the history of the mixture of these
populations have been deciphered using statistical and computational methods.
These methods have been found to perform well when dealing with single point
admixture event in two-way admixed populations [35]. However, as any method,
they not only have advantages but also pitfalls regarding the estimation of admix-
ture dates in some cases. It is challenging to fit to real admixed populations (for
more than 3-way admixture context) in the existing models dating admixture
events due to several reasons, including reliance to optimal local ancestry estimates
and accurate ancestry breakpoints. This suggests that there is still a need for
designing an integrative or a new model to dating admixture events for current
multi-way admixed populations to further advance our understanding of human
demographics and movement, and facilitate admixture mapping and estimation of
the age of a disease locus contributing to disease risk.

In addition, it have been discovered that the mixture exponential decay model
over-estimates the date of older admixture events [35] and was suggested to detect
at most three admixture events. As mentioned earlier, Ni et al. [47] dealt with the
optimization of the method used in dating admixture estimation. They took into
account several models but the evaluation of their technique is not effective in the
estimation of ancient and multi admixture events [35, 47]. On the other hand,
several practical considerations can further limit these approaches including the use
of proxy ancestry populations in the estimations which could bias the accuracy of
the result. This is the case when dealing for instance with low sample size and
inappropriate proxy ancestral populations [35]; the requirement of having accurate
LD patterns, ancestry haplotypes distribution, and a big sample size of the
admixed population. Thus, there is a need for an adequate model for inferring
different dates of admixture events and matching real admixture history using
proxy ancestry-based methods [35].

4, Conclusions

Currently, more than 20 models exist and are implemented as software to
deconvolve local ancestry and 12 tools for dating admixture events. In this chapter,
we discussed in detail and summarized the most commonly used models, the model
assumptions, statistical and biological parameters they require, and existing chal-
lenges. This discussion highlights the need for designing more effective models,
which account for current challenges and produce more accurate and biologically
relevant estimates. Furthermore, it provides useful information for the implemen-
tation of practical tools, which consider current medical and population genetic
demands. More importantly, this may guide users in the choice of appropriate tools
for specific applications and can assist software developers in designing more
advanced tools for local ancestry deconvolution and dating admixture events.
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