Orienting Future Trends in Local Ancestry Deconvolution Models to Optimally Decipher Admixed Individual Genome Variations

Abstract

Rapid advances in sequencing and genotyping technologies have significantly contributed to shaping the area of medical and population genetics. Several thousand genomes are completed with millions of variants identified in the human deoxyribonucleic acid (DNA) sequences. These genomic variations highly influence changes in phenotypic manifestations and physiological functions of different individuals or population groups. Of particular importance are variations introduced by admixture event, contributing significantly to a remarkable phenotypic variability with medical and/or evolutionary implications. In this case, knowledge of local ancestry estimates and date of admixture is of utmost importance for a better understanding of genomic variation patterns throughout modern human evolution and adaptive processes. In this chapter, we survey existing local ancestry deconvolution and dating admixture event models to identify possible gaps that still need to be filled and orient future trends in designing more effective models, which account for current challenges and produce more accurate and biological relevant estimates

    Similar works